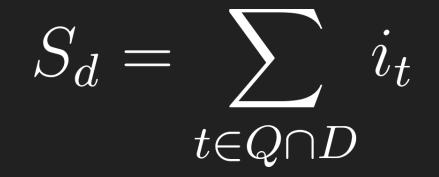
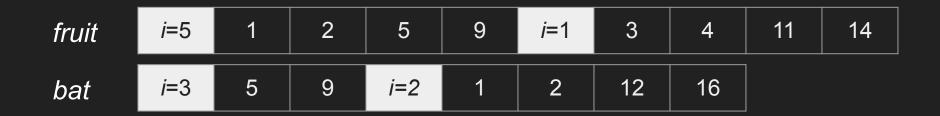
Efficiency of First-Stage Retrieval

Katelyn Harlan Supervisors: Andrew Trotman, Veronica Liesaputra University of Otago, Dunedin, New Zealand

Background


First-Stage Retrieval

- Sparse retrieval, particularly using learned sparse representations (LSR), is seeing a rise in popularity.
- Hybrid approaches proving quite effective.
- More efficient and accurate results at the low end of the pipeline gives more time to refine results at the higher levels.



Impact-Ordered Indexes // Score-at-a-Time

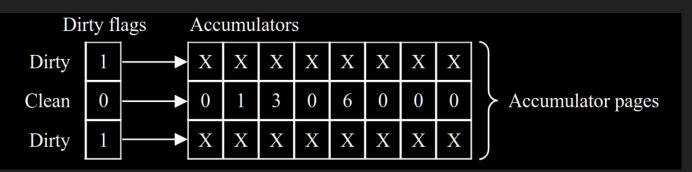
- Typical postings lists: $\langle d_1, f_{t,d_1} \rangle, \langle d_2, f_{t,d_2} \rangle, \ldots, \langle d_n, f_{t,d_n} \rangle$
- Instead of term frequencies, what if we stored a pre-computed score?
- Impact-ordered: $\langle i_t: d_1, d_2, \dots, d_n
 angle$
- SaaT: process query in decreasing impact order, so effective results even with early termination.

Score-at-a-Time

<i>i</i> =5	1	2	5	9
<i>i</i> =3	5	9		
<i>i</i> =2	1	2	12	16
<i>i</i> =1	3	4	11	14

JASSv2 & IOQP

To my knowledge, currently there are only two open-source SAAT search engines.


- Compression
- Accumulator Management
- Query Processing
- Early Termination

JASSv2

- Elias Gamma SIMD VB & QMX.
- 2D accumulator array.
- Maintains a heap of the top-k during search, interruptible.
- Process up to ρ postings.

IOQP

- SIMD BP-128 & StreamVByte.
- Zeroes table at start of each query.
- Uses a heap to find top-k documents at the end of search.
- Process at least *q* postings.

Preliminary Results

JASSv2 vs IOQP

- Reproducibility study.
- Anserini -> CIFF -> ciffTools -> FGB -> JASSv2/IOQP.
- Collections: MSMARCO, Gov2, Robust04.
- 16-bit accumulators, 8-bit quantization.

Model		JAS	Sv2		IOQP											
model	Mean	P ₅₀	P ₉₉	RR	M	ean	an P		P ₉₉		F	R				
Exhaustive																
BM25	8.2	6.7	28.2	0.188	6.8 [†]	(17.3)	5.6†	(15.4)	21.1^{\dagger}	(25.0)	0.188	(0.1)				
BM25-T5	33.4	18.7	481.4	0.274	16.2^{\dagger}	(51.5)	15.6†	(16.3)	42.9 [†]	(91.1)	0.274	(0.0)				
DeepCT	3.2	2.9	9.1	0.243	3.1 [†]	(4.0)	2.8^{\dagger}	(4.1)	7.9 [†]	(13.5)	0.244	(0.0)				
DeepImpact	23.6	25.0	63.7	0.327	19.1 [†]	(19.0)	19.5 [†]	(21.9)	51.6^{\dagger}	(18.9)	0.327	(0.0)				
uniCOIL-TILDE	58.2	48.7	197.3	0.350	46.8^{\dagger}	(19.6)	39.4^{\dagger}	(19.1)	156.0^{\dagger}	(20.9)	0.350	(0.0)				
SPLADEv2	231.2	227.9	443.5	0.369	187.2^{\dagger}	(19.0)	184.5^{\dagger}	(19.0)	358.3^{\dagger}	(19.2)	0.368	(0.2)				
Approximate																
BM25	5.7	6.4	8.2	0.187	5.2^{+}	(9.9)	5.7 [†]	(11.6)	7.3 [†]	(9.9)	0.187	(0.0)				
BM25-T5	4.8^{+}	4.9 [†]	18.1^{+}	0.272	7.1	(-48.8)	5.1	(-4.5)	18.7	(-3.3)	0.274	(0.4)				
DeepCT	3.2	2.9	7.8	0.243	3.0 [†]	(4.4)	2.8 [†]	(4.8)	6.9 [†]	(11.5)	0.243	(0.0)				
DeepImpact	6.1	6.5	8.3	0.319	5.4^{\dagger}	(12.0)	5.6 [†]	(13.0)	7.4^{\dagger}	(11.7)	0.319	(0.0)				
uniCOIL-TILDE	7.2	7.3	8.8	0.335	6.5 [†]	(9.0)	6.7 [†]	(9.3)	8.1 [†]	(7.9)	0.336	(0.4)				
SPLADEv2	7.7	7.7	9.2	0.319	6.5^{\dagger}	(16.2)	6.5^{\dagger}	(16.4)	7.8^{+}	(14.8)	0.318	(-0.4)				

JASSv2 vs IOQP

JASSv2 vs IOQP

- Reproducibility study.
- Anserini -> CIFF -> ciffTools -> FGB -> JASSv2/IOQP.
- Collections: MSMARCO, Gov2, Robust04.
- 16-bit accumulators, 8-bit quantization.
- Our results matched the previous study.
- IOQP outperforms JASSv2 out of the box.

Compression

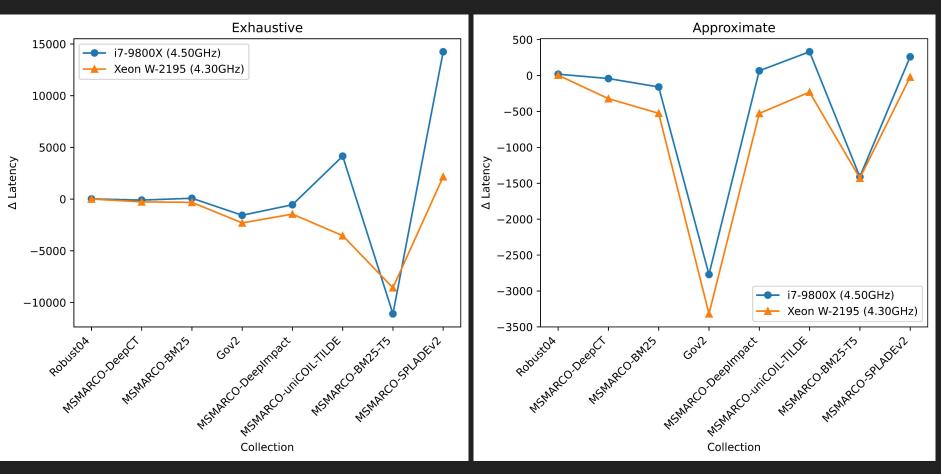
- JASSv2 Elias Gamma SIMD VB, QMX
- IOQP SIMD BP-128 (and StreamVByte)
- Partially replicate previous work:
 - QMX vs SIMD BP-128
 - Elias Gamma SIMD VB vs QMX
- For consistency, we used the original implementations of the algorithms as found in each search engine.

					JAS	Sv2					IOQP								
Model	EG VB			QMX			BP-128					Q	MX		BP-128				
	P ₅₀ P ₉₅		P ₅₀		P ₉₉		P ₅₀		P ₉₉		P ₅₀		P ₉₉		P ₅₀		P ₉₉		
Exhaustive																			
BM25	6.7	28.2	5.6	(16.5)	22.5	(20.3)	5.6	(15.8)	22.4	(20.4)	5.5	(17.7)	22.1	(21.4)	5.6	(15.4)	21.1^{\dagger}	(25.0)	
BM25-T5	18.7	481.4	16.6	(11.3)	481.0	(0.1)	14.6^{\dagger}	(22.0)	505.0	(-4.9)	27.7	(-48.1)	67.9	(85.9)	15.6	(16.3)	42.9 [†]	(91.1)	
DeepCT	2.9	9.1	2.5^{\dagger}	(13.4)	7.6	(16.5)	2.6	(9.2)	7.8	(14.3)	2.6	(10.0)	7.4^{\dagger}	(19.0)	2.8	(4.1)	7.9	(13.5)	
DeepImpact	25.0	63.7	19.8	(21.0)	51.5	(19.1)	19.2^{\dagger}	(23.2)	50.1	(21.3)	20.3	(18.8)	50.9	(20.0)	19.5	(21.9)	51.6	(18.9)	
uniCOIL-TILDE	48.7	197.3	41.2	(15.3)	168.1	(14.8)	41.7	(14.3)	169.8	(13.9)	37.1	(23.8)	149.7 [†]	(24.1)	39.4	(19.1)	156.0 [†]	(20.9)	
SPLADEv2	227.9	443.5	188.1	(17.5)	376.3	(15.2)	181.7	(20.3)	354.6	(20.1)	173.8	(23.7)	336.0 [†]	(24.3)	184.5	(19.0)	358.3	(19.2)	
Approximate																			
BM25	6.4	8.2	5.4 [†]	(16.0)	7.0 [†]	(14.3)	5.3 [†]	(16.7)	6.9^{\dagger}	(15.6)	5.6	(13.5)	7.1	(13.0)	5.7	(11.6)	7.3	(9.9)	
BM25-T5	4.9	18.1	3.9	(19.1)	17.2^{\dagger}	(4.9)	4.0	(18.2)	17.7	(2.1)	5.4	(-9.8)	42.2	(-133.2)	5.1	(-4.5)	18.7	(-3.3)	
DeepCT	2.9	7.8	2.6	(11.9)	6.7	(13.8)	2.6	(10.1)	6.7	(14.2)	2.6	(10.5)	6.4^{+}	(16.9)	2.8	(4.8)	6.9	(11.5)	
DeepImpact	6.5	8.3	5.5	(14.3)	7.7	(7.3)	5.3	(18.0)	7.2	(14.2)	5.5	(15.3)	6.9	(16.9)	5.6	(13.0)	7.4	(11.7)	
uniCOIL-TILDE	7.3	8.8	6.2	(14.9)	7.6	(13.5)	6.3	(14.4)	7.7	(12.9)	5.9 [†]	(19.4)	7.0 [†]	(20.9)	6.7	(9.3)	8.1	(7.9)	
SPLADEv2	7.7	9.2	6.3	(18.5)	7.7	(16.0)	6.6	(14.3)	8.3	(10.0)	6.0 [†]	(21.9)	7.4^{\dagger}	(20.0)	6.5	(16.4)	7.8	(14.8)	

Country of the	10.1				JAS	Sv2					IOQP								
Model	EC	G VB		QMX			BP-128					Q	MX		BP-128				
	P ₅₀ P ₉₉		P ₅₀		P99		Р	P ₅₀		P99		P ₅₀		P ₉₉	P ₅₀		P ₉₉		
Exhaustive																			
BM25	6.7	28.2	5.6	(16.5)	22.5	(20.3)	5.6	(15.8)	22.4	(20.4)	5.5	(17.7)	22.1	(21.4)	5.6	(15.4)	21.1^{\dagger}	(25.0)	
BM25-T5	18.7	481.4	16.6	(11.3)	481.0	(0.1)	14.6^{+}	(22.0)	505.0	(-4.9)	27.7	(-48.1)	67.9	(85.9)	15.6	(16.3)	42.9^{\dagger}	(91.1)	
DeepCT	2.9	9.1	2.5^{\dagger}	(13.4)	7.6	(16.5)	2.6	(9.2)	7.8	(14.3)	2.6	(10.0)	7.4^{\dagger}	(19.0)	2.8	(4.1)	7.9	(13.5)	
DeepImpact	25.0	63.7	19.8	(21.0)	51.5	(19.1)	19.2 [†]	(23.2)	50.1	(21.3)	20.3	(18.8)	50.9	(20.0)	19.5	(21.9)	51.6	(18.9)	
uniCOIL-TILDE	48.7	197.3	41.2	(15.3)	168.1	(14.8)	41.7	(14.3)	169.8	(13.9)	37.1	(23.8)	149.7 [†]	(24.1)	39.4	(19.1)	156.0 [†]	(20.9)	
SPLADEv2	227.9	443.5	188.1	(17.5)	376.3	(15.2)	181.7	(20.3)	354.6	(20.1)	173.8	(23.7)	336.0 [†]	(24.3)	184.5	(19.0)	358.3	(19.2)	
Approximate																			
BM25	6.4	8.2	5.4 [†]	(16.0)	7.0 [†]	(14.3)	5.3 [†]	(16.7)	6.9^{\dagger}	(15.6)	5.6	(13.5)	7.1	(13.0)	5.7	(11.6)	7.3	(9.9)	
BM25-T5	4.9	18.1	3.9	(19.1)	17.2^{\dagger}	(4.9)	4.0	(18.2)	17.7	(2.1)	5.4	(-9.8)	42.2	(-133.2)	5.1	(-4.5)	18.7	(-3.3)	
DeepCT	2.9	7.8	2.6	(11.9)	6.7	(13.8)	2.6	(10.1)	6.7	(14.2)	2.6	(10.5)	6.4^{+}	(16.9)	2.8	(4.8)	6.9	(11.5)	
DeepImpact	6.5	8.3	5.5	(14.3)	7.7	(7.3)	5.3	(18.0)	7.2	(14.2)	5.5	(15.3)	6.9	(16.9)	5.6	(13.0)	7.4	(11.7)	
uniCOIL-TILDE	7.3	8.8	6.2	(14.9)	7.6	(13.5)	6.3	(14.4)	7.7	(12.9)	5.9 [†]	(19.4)	7.0 [†]	(20.9)	6.7	(9.3)	8.1	(7.9)	
SPLADEv2	7.7	9.2	6.3	(18.5)	7.7	(16.0)	6.6	(14.3)	8.3	(10.0)	6.0 [†]	(21.9)	7.4^{\dagger}	(20.0)	6.5	(16.4)	7.8	(14.8)	

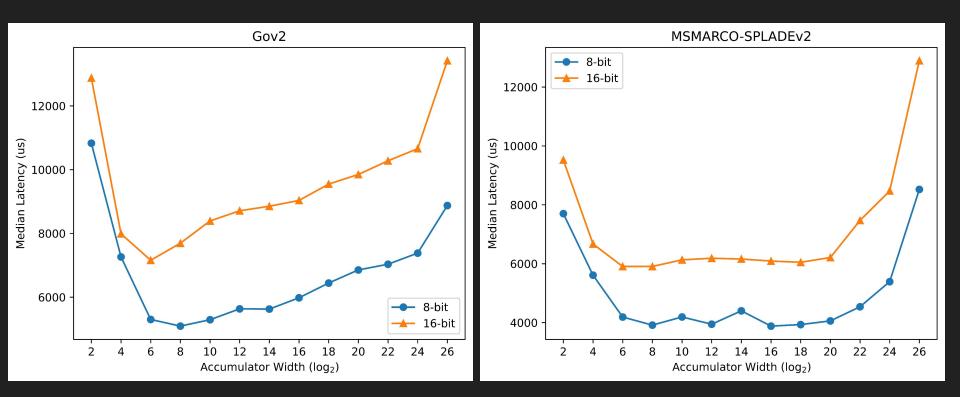
the state of the state	les s				JAS	Sv2					IOQP								
Model	EG VB			QMX				BP-128				Q		BP-128					
	P ₅₀ P ₉₉		P ₅₀		P ₉₉		Р	P ₅₀		P ₉₉		P ₅₀		P ₉₉	P ₅₀		P99		
Exhaustive																			
BM25	6.7	28.2	5.6	(16.5)	22.5	(20.3)	5.6	(15.8)	22.4	(20.4)	5.5	(17.7)	22.1	(21.4)	5.6	(15.4)	21.1^{\dagger}	(25.0)	
BM25-T5	18.7	481.4	16.6	(11.3)	481.0	(0.1)	14.6^{\dagger}	(22.0)	505.0	(-4.9)	27.7	(-48.1)	67.9	(85.9)	15.6	(16.3)	42.9 [†]	(91.1)	
DeepCT	2.9	9.1	2.5^{\dagger}	(13.4)	7.6	(16.5)	2.6	(9.2)	7.8	(14.3)	2.6	(10.0)	7.4^{\dagger}	(19.0)	2.8	(4.1)	7.9	(13.5)	
DeepImpact	25.0	63.7	19.8	(21.0)	51.5	(19.1)	19.2^{\dagger}	(23.2)	50.1	(21.3)	20.3	(18.8)	50.9	(20.0)	19.5	(21.9)	51.6	(18.9)	
uniCOIL-TILDE	48.7	197.3	41.2	(15.3)	168.1	(14.8)	41.7	(14.3)	169.8	(13.9)	37.1	(23.8)	149.7 [†]	(24.1)	39.4	(19.1)	156.0 [†]	(20.9)	
SPLADEv2	227.9	443.5	188.1	(17.5)	376.3	(15.2)	181.7	(20.3)	354.6	(20.1)	173.8	(23.7)	336.0 [†]	(24.3)	184.5	(19.0)	358.3	(19.2)	
Approximate																			
BM25	6.4	8.2	5.4 [†]	(16.0)	7.0 [†]	(14.3)	5.3†	(16.7)	6.9 [†]	(15.6)	5.6	(13.5)	7.1	(13.0)	5.7	(11.6)	7.3	(9.9)	
BM25-T5	4.9	18.1	3.9	(19.1)	17.2^{\dagger}	(4.9)	4.0	(18.2)	17.7	(2.1)	5.4	(-9.8)	42.2	(-133.2)	5.1	(-4.5)	18.7	(-3.3)	
DeepCT	2.9	7.8	2.6	(11.9)	6.7	(13.8)	2.6	(10.1)	6.7	(14.2)	2.6	(10.5)	6.4^{+}	(16.9)	2.8	(4.8)	6.9	(11.5)	
DeepImpact	6.5	8.3	5.5	(14.3)	7.7	(7.3)	5.3	(18.0)	7.2	(14.2)	5.5	(15.3)	6.9	(16.9)	5.6	(13.0)	7.4	(11.7)	
uniCOIL-TILDE	7.3	8.8	6.2	(14.9)	7.6	(13.5)	6.3	(14.4)	7.7	(12.9)	5.9 [†]	(19.4)	7.0 [†]	(20.9)	6.7	(9.3)	8.1	(7.9)	
SPLADEv2	7.7	9.2	6.3	(18.5)	7.7	(16.0)	6.6	(14.3)	8.3	(10.0)	6.0 [†]	(21.9)	7.4^{\dagger}	(20.0)	6.5	(16.4)	7.8	(14.8)	

	100				JAS	Sv2				101	IOQP								
Model	EG VB			QMX				BP-128				Q		BP-128					
	P ₅₀ P ₉₉		P ₅₀		P ₉₉		P	P ₅₀		P ₉₉		P ₅₀		P99	P ₅₀		P99		
Exhaustive																			
BM25	6.7	28.2	5.6	(16.5)	22.5	(20.3)	5.6	(15.8)	22.4	(20.4)	5.5	(17.7)	22.1	(21.4)	5.6	(15.4)	21.1^{\dagger}	(25.0)	
BM25-T5	18.7	481.4	16.6	(11.3)	481.0	(0.1)	14.6^{+}	(22.0)	505.0	(-4.9)	27.7	(-48.1)	67.9	(85.9)	15.6	(16.3)	42.9 [†]	(91.1)	
DeepCT	2.9	9.1	2.5^{\dagger}	(13.4)	7.6	(16.5)	2.6	(9.2)	7.8	(14.3)	2.6	(10.0)	7.4^{\dagger}	(19.0)	2.8	(4.1)	7.9	(13.5)	
DeepImpact	25.0	63.7	19.8	(21.0)	51.5	(19.1)	19.2^{\dagger}	(23.2)	50.1	(21.3)	20.3	(18.8)	50.9	(20.0)	19.5	(21.9)	51.6	(18.9)	
uniCOIL-TILDE	48.7	197.3	41.2	(15.3)	168.1	(14.8)	41.7	(14.3)	169.8	(13.9)	37.1	(23.8)	149.7 [†]	(24.1)	39.4	(19.1)	156.0 [†]	(20.9)	
SPLADEv2	227.9	443.5	188.1	(17.5)	376.3	(15.2)	181.7	(20.3)	354.6	(20.1)	173.8	(23.7)	336.0 [†]	(24.3)	184.5	(19.0)	358.3	(19.2)	
Approximate																			
BM25	6.4	8.2	5.4	(16.0)	7.0 [†]	(14.3)	5.3 [†]	(16.7)	6.9 [†]	(15.6)	5.6	(13.5)	7.1	(13.0)	5.7	(11.6)	7.3	(9.9)	
BM25-T5	4.9	18.1	3.9	(19.1)	17.2^{\dagger}	(4.9)	4.0	(18.2)	17.7	(2.1)	5.4	(-9.8)	42.2	(-133.2)	5.1	(-4.5)	18.7	(-3.3)	
DeepCT	2.9	7.8	2.6	(11.9)	6.7	(13.8)	2.6	(10.1)	6.7	(14.2)	2.6	(10.5)	6.4^{\dagger}	(16.9)	2.8	(4.8)	6.9	(11.5)	
DeepImpact	6.5	8.3	5.5	(14.3)	7.7	(7.3)	5.3	(18.0)	7.2	(14.2)	5.5	(15.3)	6.9	(16.9)	5.6	(13.0)	7.4	(11.7)	
uniCOIL-TILDE	7.3	8.8	6.2	(14.9)	7.6	(13.5)	6.3	(14.4)	7.7	(12.9)	5.9 [†]	(19.4)	7.0 [†]	(20.9)	6.7	(9.3)	8.1	(7.9)	
SPLADEv2	7.7	9.2	6.3	(18.5)	7.7	(16.0)	6.6	(14.3)	8.3	(10.0)	6.0 [†]	(21.9)	7.4^{\dagger}	(20.0)	6.5	(16.4)	7.8	(14.8)	


to star an an	2.1				JAS	Sv2					IOQP								
Model	EG VB			QMX			BP-128					Q		BP-128					
	P ₅₀	P ₉₉	P	50	P	P99		P ₅₀		P ₉₉		P ₅₀		P99	P ₅₀		Р	99	
Exhaustive																			
BM25	6.7	28.2	5.6	(16.5)	22.5	(20.3)	5.6	(15.8)	22.4	(20.4)	5.5	(17.7)	22.1	(21.4)	5.6	(15.4)	21.1^{\dagger}	(25.0)	
BM25-T5	18.7	481.4	16.6	(11.3)	481.0	(0.1)	14.6^{+}	(22.0)	505.0	(-4.9)	27.7	(-48.1)	67.9	(85.9)	15.6	(16.3)	42.9 [†]	(91.1)	
DeepCT	2.9	9.1	2.5^{\dagger}	(13.4)	7.6	(16.5)	2.6	(9.2)	7.8	(14.3)	2.6	(10.0)	7.4^{\dagger}	(19.0)	2.8	(4.1)	7.9	(13.5)	
DeepImpact	25.0	63.7	19.8	(21.0)	51.5	(19.1)	19.2^{\dagger}	(23.2)	50.1	(21.3)	20.3	(18.8)	50.9	(20.0)	19.5	(21.9)	51.6	(18.9)	
uniCOIL-TILDE	48.7	197.3	41.2	(15.3)	168.1	(14.8)	41.7	(14.3)	169.8	(13.9)	37.1	(23.8)	149.7 [†]	(24.1)	39.4	(19.1)	156.0 [†]	(20.9)	
SPLADEv2	227.9	443.5	188.1	(17.5)	376.3	(15.2)	181.7	(20.3)	354.6	(20.1)	173.8	(23.7)	336.0 [†]	(24.3)	184.5	(19.0)	358.3	(19.2)	
Approximate																			
BM25	6.4	8.2	5.4 [†]	(16.0)	7.0 [†]	(14.3)	5.3 [†]	(16.7)	6.9 [†]	(15.6)	5.6	(13.5)	7.1	(13.0)	5.7	(11.6)	7.3	(9.9)	
BM25-T5	4.9	18.1	3.9	(19.1)	17.2^{\dagger}	(4.9)	4.0	(18.2)	17.7	(2.1)	5.4	(-9.8)	42.2	(-133.2)	5.1	(-4.5)	18.7	(-3.3)	
DeepCT	2.9	7.8	2.6	(11.9)	6.7	(13.8)	2.6	(10.1)	6.7	(14.2)	2.6	(10.5)	6.4^{+}	(16.9)	2.8	(4.8)	6.9	(11.5)	
DeepImpact	6.5	8.3	5.5	(14.3)	7.7	(7.3)	5.3	(18.0)	7.2	(14.2)	5.5	(15.3)	6.9	(16.9)	5.6	(13.0)	7.4	(11.7)	
uniCOIL-TILDE	7.3	8.8	6.2	(14.9)	7.6	(13.5)	6.3	(14.4)	7.7	(12.9)	5.9 [†]	(19.4)	7.0 [†]	(20.9)	6.7	(9.3)	8.1	(7.9)	
SPLADEv2	7.7	9.2	6.3	(18.5)	7.7	(16.0)	6.6	(14.3)	8.3	(10.0)	6.0^{\dagger}	(21.9)	7.4^{\dagger}	(20.0)	6.5	(16.4)	7.8	(14.8)	

Compression

- In terms of space, there is no substantial difference between the codecs. But, JASSv2 indexes are always smaller than their IOQP counterparts.
- Elias Gamma SIMD VB is outperformed by QMX and SIMD BP-128.
- We could not determine if QMX or SIMD BP-128 was more efficient.
- IOQP has faster tail latency.
- JASSv2 has faster median latency.


CPU

- Up to this point we used a desktop-grade CPU (Intel i7-9800X/4.50GHz), but prior work used dual server-grade CPUs (Intel Xeon Gold 6144/4.20GHz).
- We introduce a second machine with a server-grade Intel Xeon W-2195 (4.30GHz) to investigate the impact of the CPU.
- We found that the Xeon generally decreased latency. But what of the performance gap?

CPU

- Overall, we found JASSv2 was faster on the Xeon.
- IOQP was typically faster on the i7.
- The query latency is affected by hardware but the effects are not equal across search engines.

Accumulators // Approximate

Extending the Research

Future Work

- Accumulator management:
 - Is this sensitive to the CPU?
 - When to use 2D array?
 - Finding the ideal width.
 - Exploring other strategies.
- Early termination:
 - A quick examination of the different termination logic.
- Seismic and Block-Max Pruning?
 - Comparing SaaT to other developments in LSR.

Acknowledgements

University of Otago SIGIR