
Arthur Câmara - TU Delft/Naver Labs Europe

Moving Stuff Around 
A study on the efficiency of moving documents into memory for 
Neural IR models



Let’s train a Neural (re-)Ranker.



Simple enough, right?

A Cross-Encoder with a linear layer over the CLS tokens.



How about the data?



PyTorch’s Dataset makes it so easy!



Training Loop for multiple GPUs?





What’s the problem here?





What’s the problem?
DataParallel

GPU:0 Data Model

forward

forward

Output

loss

Loss

backwards

backwards

Gradients

Update model

forward backwards

GPU:1

GPU:2

Main Memory

Data



What’s the problem?

• Too much communication overhead!


• The faster the GPU, the more noticeable the overhead.


• Link speed also matters! NVLink is faster than PCI!


• Each GPU has its own thread for processing the input.


• Even if all data goes through GPU:0, pre-processing is multi-threaded.


• Which can lead to problems with the GIL.



The what now?
Global Interpreter Lock

• DataParallel creates one thread per GPU


• In (C)Python, only ONE Python thread can run at a time.


• The Global Interpreter Lock (GIL) is a Mutex lock that enforces that.


• Great for code written in C (or Rust, like tokenizers)


• Not very useful for (almost) anything else that runs in parallel.



An improvement!
DistributedDataParallel

GPU:0

forward + 

backwards

Avg. Gradient +

 Update model

GPU:1

GPU:2

Main Memory

Data/n

Data/n

Data/n

Gradients

Gradients

forward + 

backwards

forward + 

backwards

Avg. Gradient +

 Update model

Avg. Gradient +

 Update model



Distributed Data Parallel

• Significantly lower communication overhead!


• Unless your GPUs are communicating via PCI instead of NVLink. 


• One PROCESS per GPU. Completely sidesteps the GIL.


• It can also distribute the MODEL between GPUs, making it possible to train 
models that wouldn’t fit in a single GPU.


• DDP creates one copy of everything for each GPU.



Anything else?



• Each process will have a copy 
of ALL documents


• MsMarco v1 takes ~20GB


• MsMarco v2, ~100GB.


• ClueWeb22 is coming.


• Unless you have infinite RAM, 
not a good idea!



Alternatives?

• TREC-DL have an idea: 


• Use a pointer to the document.


• Shrinks memory usage to ~4GB/GPU


• Or, rather, use an existing library, like ir_datasets!


• Even faster at some times (uses NumPy’s memarray)


• Already have everything you may need (queries, qrels, documents, etc)


• Both options are FASTER than loading into memory!



How much faster?



Number of GPUs 1 GPU 2 GPUs 4GPUs 8 GPus

In-memory 39.65 samples/s 73.73 samples/s OOM OOM

Indexed (Trec-DL style) 39.71 samples/s 74.98 samples/s 140.04 samples/s 262.62 samples/s

ir_datasets 39.16 samples/s 75.45 samples/s 141.31 samples/s 264.08 samples/s

• Ignoring “warm-up” time


• GTX 1080Tis, without NVLink


• Using Distributed DataParallel


• 256GB of Memory

• OOM: Out-of-memory


• Teal: Faster option for that number of GPUs


• Code and dashboard here:


• https://github.com/ArthurCamara/ir_efficiency/



Moving forward



Caveats

• We measured these numbers WITHOUT NVLink, which can increase DDP performance even 
further.


• Same for Mixed and Half-precision weights. (i.e., FP16). It should also lead to faster results.


• We only measured Transformers and PyTorch.


• What about TF-Ranking?


• There are plenty of libraries to speed-up training, like ray.io and PyTorch Lightning.


• We haven’t checked these.


• For decades, the GIL is supposedly disappearing. If so, DP should improve.


• We got it (kind of) wrong in the paper. DDP has LOWER overhead than DP if using NvLink.

http://ray.io


Take-home message and recommendations

✗ Don’t load all of the documents in memory. 


It’s slower, and as datasets grow, it will be unusable on larger datasets.


✗ Don’t use DataParallel.


It has a higher overhead and may lead to problems with the GIL.


✓ Be more conscious of how you read data from disk.


If the dataset is available on ir_datasets, use it. Otherwise, a lookup table can work well. 


✓ Do use DistributedDataParallel.


It has less overhead, scales better, and libraries like HF Accelerator implement it for you.


