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et’s train a Neural (re-)Ranker.



Simple enough, right?
A Cross-Encoder with a linear layer over the CLS tokens.

from torch import nn
from transformers import AutoModel

class CrossEncoderModel(nn.Module):
def __init__ (self, config) —> None:
super().__init__ (config)
self.bert_model = AutoModel.from_pretrained(config._name_or_path)
self.dropout = nn.Dropout(0.1)
self.classifier = nn.Linear(config.hidden_size, 1)
self.loss = nn.BCEWithLogitsLoss()

def forward(self, input_ids, attention_mask, labels):

outputs self.bert_model(input_ids, attention_mask=attention_mask)
CLS_tokens = outputs.last_hidden_state[:, 0, :]

pooled_outputs = self.dropout(CLS_tokens)

logits = self.classifier(pooled_outputs).view(-1)

loss = self.loss(logits.view(-1), labels).mean()

return loss, logits




How about the data?



class MyDataset(Dataset):

def

def

__init__ (self, docs_path, queries_path, qrels):
self.all doc_ids = []

self.docs = {}

self.queries = {}

for line in open(docs_path):

d_id, doc = line.strip().split("\t", maxsplit=1)
self.all_doc_ids.append(d_id)

self.docs[d_id] = doc

for line in open(queries_path):

d_id, doc = line.strip().split("\t", maxsplit=1)
self.queries[d_id] = doc

self.train_qrels = pytrec_eval.parse_qrel(open(qgrels))
self.g_ids = dict(enumerate(self.train_qrels.keys()))

__getitem__(self, index):

q_id = self.q_ids[index]

d_id = list(self.train_qrels[q_id].keys()) [0]
neg_id = random.choice(self.all_doc_ids)

return {"query_text": self.queries[q_id],
"doc_text": self.docs[d _id],
"neg_text": self.docs[neg_id],

Pylorch’s Dataset makes it so easy!



Training Loop for multiple GPUs?



train_dataset = MyDataset("msmarco_docs", "msmarco_queries", "msmarco_grels")
model_config = AutoConfig.from_pretrained("distilbert-base—-uncased")
model = nn.DataParallel(CrossEncoderModel(model_config))

device = torch.device("cuda")

model.to(device)

loader = DatalLoader(train dataset, batch size=8)

optimizer = transformers.AdamW(model.parameters())
optimizer.zero_grad()

model.train()

for features, labels in loader:

for k in features.keys():

| features[k] = features[k].to(device)

labels = labels.to(device)

loss, _ = model(xxfeatures, labels=labels)

loss = loss.mean(dim=0)

loss.backward(); optimizer.step(); optimizer.zero_grad()




What’s the problem here?



model = nn.DataParallel(CrossEncoderModel(model_config))



What'’s the problem?
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What'’s the problem?

* Too much communication overhead!
 The faster the GPU, the more noticeable the overhead.
* Link speed also matters! NVLink is faster than PCI!
 Each GPU has its own thread for processing the input.
 Even if all data goes through GPU:0, pre-processing is multi-threaded.

 Which can lead to problems with the GIL.



The what now?

Global Interpreter Lock

 DataParallel creates one thread per GPU

* In (C)Python, only ONE Python thread can run at a time.

 The Global Interpreter Lock (GIL) is a Mutex lock that enforces that.
e Great for code written in C (or Rust, like tokenizers)

* Not very useful for (almost) anything else that runs in parallel.



An improvement!
DistributedDataParallel
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Distributed Data Parallel

o Significantly lower communication overhead!
* Unless your GPUs are communicating via PCI instead of NVLink.

 One PROCESS per GPU. Completely sidesteps the GIL.

* |t can also distribute the MODEL between GPUs, making it possible to train
models that wouldn’t fit in a single GPU.

 DDP creates one copy of everything for each GPU.



Anything else?



for line in open(docs_path):
d_id, doc = line.strip().split("\t", maxsplit=1) ° Each process will have 2] COpy

self. all_doc_.lds;append (d_id) of ALL documents
self.docs[d_id] = doc

e MsMarco vi1 takes ~20GB
e MsMarco v2, ~100GB.
o ClueWeb22 is coming.

* Unless you have infinite RAM,
not a good idea!



import json

def get_document(document_id):
(stringl, string2, bundlenum, position) = document_id.split('_")

Alternatives? BEECTEE Rtk

with open(f'./msmarco_v2_doc/msmarco_doc_{bundlenum}', 'rt', encoding='utf8') as in_th:

in_fh.seek(int(position))

json_string = in_fh.readline()

document = json.loads(json_string)
assert document['docid'] == document_id

return document

i TREC_DL have an idea: document = get_document('msmarco_doc_31_726131")

print(document.keys())

 Use a pointer to the document.

* Shrinks memory usage to ~4GB/GPU
* Or, rather, use an existing library, like ir_datasets!
 Even faster at some times (uses NumPy’s memarray)

* Already have everything you may need (queries, grels, documents, etc)

 Both options are FASTER than loading into memory!



How much faster?



Number of GPUs

1 GPU

2 GPUs

4GPUs

8 GPus

In-memory

39.65 samples/s

Indexed (Trec-DL style)

Ir datasets

39.16 samples/s

7/3.73 samples/s

OOM

OOM

* Ignoring “warm-up” time

 GTX 1080Tis, without NVLink

* Using Distributed DataParallel
e 256GB of Memory

74.98 samples/s

140.04 samples/s

: Out-of-memory

262.62 samples/s

e Teal: Faster option for that number of GPUs

e Code and dashboard here:

 https://github.com/ArthurCamara/ir_efficiency/



Moving forward



Caveats

 We measured these numbers WITHOUT NVLink, which can increase DDP performance even
further.

 Same for Mixed and Half-precision weights. (i.e., FP16). It should also lead to faster results.
 We only measured Transformers and PyTorch.

 What about TF-Ranking?

* There are plenty of libraries to speed-up training, like ray.io and PyTorch Lightning.

e We haven’t checked these.

* For decades, the GIL is supposedly disappearing. If so, DP should improve.

 We got it (kind of) wrong in the paper. DDP has LOWER overhead than DP if using NvLink.


http://ray.io

Take-home message and recommendations

Don’t load all of the documents in memory.

It’s slower, and as datasets grow, it will be unusable on larger datasets.
Don’t use DataParallel.

It has a higher overhead and may lead to problems with the GIL.

Be more conscious of how you read data from disk.

If the dataset Is available on ir_datasets, use it. Otherwise, a lookup table can work well.

Do use DistributedDataParallel.

It has less overhead, scales better, and libraries like HF Accelerator implement it for you.



