
Faster Learned Sparse Retrieval
with Guided Traversal



Introduction and Preliminaries



Context: Recently, a number of neural-based
techniques have been explored for improving
inverted index based retrieval.

◆ Term Expansion: Both offline (applied to
documents) and online (applied to queries).

◆ Term (Re)weighting: Both offline (reweighted
term frequencies, or learned impacts) and
online (query term weighting).
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search is cool



search is cool
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Expanded documents → longer
postings lists
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[where 268] [bull 237] [creek 219] [queensland 211]
[australia 183] [##i 132] [headquarters 92]
[australian 86] [habitat 72] [stream 71] [brisbane 64]
[him 40] [lake 37] [scotland 31] [it 29] [are 7] [from 6]
[river 5] [italy 3]



Problem: Learned sparse models negatively impact
processing latency.

Purpose: Make learned sparse models as fast as
traditional models.

Approach: Heuristics.



Why are learned sparse models
slower?



Dynamic Pruning at a glance

Assumption: Ranking is additive.

Requirement: We have pre-computed the
maximum impact for each term (postings list) and
stored it.

Requirement: During processing, we have access
to the k th highest score “seen so far” (a threshold
θ).
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But what if the distributions change?
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Learned Models violate the embedded assumption
of IDF: The more rare a term, the more highly it
should be weighted with respect to the other terms.
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Our Heuristic



Observation: DeepImpact is built over a
DocT5Query Index… Postings lists are (almost)
one-to-one.
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Dual 12 8 220 7 122 1 429 9



Hypothesis: BM25 visits the right documents; it
just doesn’t rank them well.



Guided Traversal (GT)
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Interpolation is easy/fast (we call this GTI).

In our experiments, we just do an unweighted
linear interpolation.
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Limitations and Future Work

Packing method is naı̈ve and difficult to compress.

Specialized solution; works only when postings
align.

Only works in contexts where BM25 (over an
expanded index) visits the “good” documents.



Concluding Notes:
Benchmarking is hard!



CIKM 2009: “How confident are we that a

technique that yields an improvement over a

weak baseline would also give an

improvement over a strong one?”



“There are instances where an option creates

a significant improvement when added to

certain configurations, but has no overall

effect when added to others.”



Base system 

Base system + Stemming 

“There are instances where an option creates

a significant improvement when added to

certain configurations, but has no overall

effect when added to others.”



“There are instances where an option creates

a significant improvement when added to

certain configurations, but has no overall

effect when added to others.”



Base system + Stopping + 
Expansion + Fusion + Stemming 

Base system + Stopping + 
Expansion + Fusion  

“There are instances where an option creates

a significant improvement when added to

certain configurations, but has no overall

effect when added to others.”



Improvements are broadly additive

“There are instances where an option creates

a significant improvement when added to

certain configurations, but has no overall

effect when added to others.”





This also applies to efficiency studies!



Benchmarking is difficult…

CPU vs GPU? Which CPU and which GPU??

Optimized codebase? Research code? How much do
we know (and need to know) about the underlying
codebase?

Context of measurement; Scale of collections,
hardware, etc… tension between latency,
throughput, space occupancy, scalability,
computing power and cost → CO2
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