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Introduction and Preliminaries



Context: Recently, a number of neural-based
techniques have been explored for improving
inverted index based retrieval.

¢ Term Expansion: Both offline (applied to
documents) and online (applied to queries).

¢ Term (Re)weighting: Both offline (reweighted
term frequencies, or learned impacts) and
online (query term weighting).
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search is fun

search is fun for everyone
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Lexicon Postings Lists
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Score documents with a bag-of-words ranker
-BM25, Language Model, DPH, etc
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Idea: Add questions to documents to avoid
vocabulary mismatch!



search is cool



search is cool
+ why is search cool?

+ who thinks search is cool?
+...
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Expanded documents — longer

postings lists



Lexicon Postings Lists

search [-|—— [o]1][1]1] 2] 1]
cool |—— |0]1
fun |- [1] 1] 2] 1]
everyone|—> | 2] 1




Lexicon Postings Lists

search [-|—— [o]1][1]1] 2] 1]
cool |——— [0]1
fun |- [1] 1] 2] 1]
everyone|——> [ 2] 1

Idea: Why don't we learn the term frequencies?
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Idea: Why don't we learn the term frequencies?
- DeepCT, HDCT
- Use contextual language models to re-weight tf's

- Still score with traditional models!
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Idea: Learn the impact (not the term frequency)
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Idea: Learn the impact (not the term frequency)

- Deeplmpact
- TILDE(v2)
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+ Learn weights for each query
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Idea: Learn the impact (not the term frequency)
+ Learn weights for each query
- uniCOIL, SPLADEv2



Default

999391 where is bulli creek queensland australia



uniCOIL-TILDE

999391 where where where where where where where where where where where where where where where where where
where where where where where where where where where where where where where where where where where where

bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull
bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull
bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull
bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull
bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull
bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull bull
bull bull bull ##i ##i ## ##1 ##1 ##1 ##1 #51 ##1 #81 #51 #51 F81 #51 FH1 S50 #5101 881 801 151 881 350 #8881 #1481 #30 #01 #8190

[where 42][is 44][bull 194][##i 116][creek 165]
[queensland 149][australia 70]



SPLADEvV2 [Adds query expansion]

are him him him him him him him him him him him him him him him him him him him him him him him him him him
him him him him him him him him him him him him him him ##i ##0 ##0 ##1 ##0 #81 $81 #50 #81 #3 81 881 301 #8881 880 #8i
HHEHH AT R BT HR B RRT BT SRTAHTRBTBHT BT BB A BT R AT S R SR B R SRR R B R R A R
HHT AR RSB RRAT BT BT BET BT AR HH AR SRR SR SR AT BB R BB R BB B R R R
FELBH A FR R SRR ART SRR BB R BRI B B AR B AR A R AR R SR R R B
##1#HIRE]##]BRT R B#T#FT #81 #81 #8881 where where where where where where where where where where where where
where where where where where where where where where where ...

[where 268] [bull 237] [creek 219] [queensland 211]
[australia 183] [##i 132] [headquarters 92]
[australian 86] [habitat 72] [stream 71] [brisbane 64]

[him 40] [lake 37] [scotland 31] [it 29] [are 7] [from 6
[river 5] [italy 3]



Problem: Learned sparse models negatively impact

processing latency.

Purpose: Make learned sparse models as fast as
traditional models.

Approach: Heuristics.



Why are learned sparse models

slower?



Dynamic Pruning at a glance
Assumption: Ranking is additive.

Requirement: We have pre-computed the
maximum impact for each term (postings list) and
stored it.

Requirement: During processing, we have access
to the k th highest score “seen so far” (a threshold
0).
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But what if the distributions change?
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Learned Models violate the embedded assumption
of IDF: The more rare a term, the more highly it
should be weighted with respect to the other terms.
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Our Heuristic



Observation: Deeplmpact is built over a
DocT5Query Index... Postings lists are (almost)
one-to-one.



DocT5 [12]5 [[20] 2 |[22] 1 |[29] 4 |

Deeplmpact [12] 8 ](20] 7 |[22] 1](29] 9 |




DocT5/{12]5 |[20] 2 |[22] 1 ![29] 4 |

Deeplmpact |[12] 8 ][20] 7 |[22] 1 {[29] 9 |




DocT5 [12]5 [[20] 2 |[22] 1 |[29] 4 |

Deeplmpact [12] 8 |[20] 7 |[22] 1 [29] 9 |

Dual [12]58][20[27][22]11][29]49]




Hypothesis: BM25 visits the right documents; it
just doesn’t rank them well.



Guided Traversal (GT)
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(c) Decoding Impacts (d) Document Scoring



Interpolation is easy/fast (we call this GTI).

In our experiments, we just do an unweighted

linear interpolation.
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Limitations and Future Work
Packing method is naive and difficult to compress.

Specialized solution; works only when postings

align.

Only works in contexts where BM25 (over an
expanded index) visits the “good” documents.



Concluding Notes:
Benchmarking is hard!



Improvements That Don’t Add Up:
Ad-Hoc Retrieval Results Since 1998

Timothy G. Armstrong, Alistair Moffat, William Webber, Justin Zobel

Computer Science and Software Engineering
The University of Melbourne
Victoria 3010, Australia

{tgar,alistair,wew,jz}@csse.unimelb.edu.au

CIKM 2009: “How confident are we that a
technique that yields an improvement over a
weak baseline would also give an

improvement over a strong one?”
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“There are instances where an option creates
a significant improvement when added to
certain configurations, but has no overall
effect when added to others.”
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Improvements are broadly additive

“There are instances where an option creates
a significant improvement when added to
certain configurations, but has no overall
effect when added to others.”



Examining Additivity and Weak Baselines
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Maurizio Ferrari Dacrema Paolo Cremonesi Dietmar Jannach
Politecnico di Milano, ltaly Politecnico di Milano, Italy University of Klagenfurt, Austria




Examining the Additivity of Top-k Query Processing Innovations

Joel Mackenzie Alistair Moffat
The University of Melbourne The University of Melbourne
Melbourne, Australia Melbourne, Australia

This also applies to efficiency studies!



Benchmarking is difficult...
CPU vs GPU? Which CPU and which GPU??

Optimized codebase? Research code? How much do
we know (and need to know) about the underlying

codebase?

Context of measurement; Scale of collections,
hardware, etc... tension between latency,
throughput, space occupancy, scalability,
computing power and cost — CO2
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