
Efficient Machine Learning and
Machine Learning for Efficiency

in Information Retrieval

Bhaskar Mitra
Principal Researcher

Microsoft Research

@UnderdogGeek bmitra@microsoft.com

Workshop on Reaching Efficiency
in Neural Information Retrieval

Source: https://en.wiktionary.org/wiki/efficient

https://en.wiktionary.org/wiki/efficient

Complex trade-offs

between different costs

makes benchmarking

challenging

Typical playbook for

efficiency: find cheaper

approximation, trade-off

other costs, reduce task

Machine learning can

be employed to directly

improve efficiency of

large-scale IR systems

Key points:

Challenges of

benchmarking

for efficiency

What do we measure and what do

we control for? How do we capture

trade-offs between measures?

What stages of the pipeline can we

evaluate?

How do we test the benchmark for

construct validity and prevent

negative externalities?

SustaiNLP (2020) Shared Task
Website: https://sites.google.com/view/sustainlp2020/shared-task

Paper: https://aclanthology.org/2020.sustainlp-1.24.pdf

Benchmarks effectiveness and inference-time

energy-consumption

(Some relevant examples from our NLP peers)

NeurIPS 2020 EfficientQA Competition
Website: https://efficientqa.github.io/

Paper: http://proceedings.mlr.press/v133/min21a/min21a.pdf

Benchmarks effectiveness while grouping submitted

systems by their inference-time docker image size

ELUE (Efficient Language Understanding Evaluation)
Website: http://eluebenchmark.fastnlp.top/

Paper: https://txsun1997.github.io/papers/elue_paper.pdf

(Benchmarks effectiveness, number of model

parameters, and inference-time FLOPs)

What would a TREC Neural Efficiency Track look like?

https://sites.google.com/view/sustainlp2020/shared-task
https://aclanthology.org/2020.sustainlp-1.24.pdf
https://efficientqa.github.io/
http://proceedings.mlr.press/v133/min21a/min21a.pdf
http://eluebenchmark.fastnlp.top/
https://txsun1997.github.io/papers/elue_paper.pdf

Benchmarking by jointly considering effectiveness,
efficiency, and robustness

Hofstätter, Craswell, Mitra, Zamani, and Hanbury. Are We There Yet? A Decision Framework for Replacing Term-Based Retrieval with Dense Retrieval Systems. ArXiv preprint. (2022)

A preliminary framework:

• Identify key measures of effectiveness, efficiency, and robustness

• Measures can either be traded-off against each other, or act as

guardrails

• Apply value-laden and business-informed trade-offs between

cost and robustness measures to define aggregate measures, e.g.,

• Identify the set of acceptable solutions (again) based on value-

laden and business-informed trade-offs decision boundaries

https://arxiv.org/pdf/2206.12993.pdf

Developing more efficient neural IR models

This playbook has been useful in allowing explorations of more

ambitious architectures and then reducing their costs /

footprints to make them practically deployable in large

commercial settings

However, we should ask:

• Would we build different models if we are informed by

broader system design (data structures and algorithms) and

cost considerations from the very start?

• Are groups with access to large compute resources

adequately incentivized to consider efficiency as early as

possible in the development process, especially given that

large compute resources can be a competitive advantage?

• Are we missing out on use-cases where machine learning is

employed specifically to improve efficiency, instead of

effectiveness?

Identify key

efficiency

bottlenecks and

costs

Find cheaper

approximations, or

trade-off with other

costs, or reduce the

task

Develop more

complicated

models optimizing

only for

effectiveness
A typical

model

development

playbook

Case studies: Scaling BERT-based relevance models to
long documents and full retrieval settings

Nogueira and Cho (2019)

How do we scale to

longer documents?

How do we scale to

full retrieval from

large collections?

Bottleneck: Peak GPU

memory during training

Challenge: Collection size

vs. expected online query

response time

https://arxiv.org/pdf/1901.04085.pdf

Challenges in scaling
BERT to longer inputs

At training time, the GPU memory requirement for

BERT’s self-attention layers grows quadratically w.r.t. to

input length

The quadratic complexity is a direct result of storing all

the 𝑛2-dimensional attention matrices in GPU memory

during training for easier backpropagation

Potential workarounds:

• Trade-off GPU memory and training time by

proactively releasing GPU memory during forward

pass at the cost of redundant re-computations

during backward pass

• Find cheaper approximation to self-attention layers

• Reduce the input space by running BERT on select

passages in the document

Trade-off GPU memory and training time using
gradient checkpointing

At training time, during the forward-pass the model

caches all intermediate outputs in GPU memory so

that during backward-pass we can easily compute

the gradients of a layer’s outputs w.r.t. its inputs

Under gradient checkpointing (Chen et al., 2016), in

contrast, the model only saves intermediate outputs

at specific checkpoints; during the backward-pass,

missing intermediate outputs are recomputed based

on the closed preceding checkpoint(s)

For Transformers, this allows us to store only one

𝑛2-dimensional attention matrix in GPU memory at

any given time!

Without gradient checkpointing:

With gradient checkpointing: checkpoint

Stored in GPU memory

https://medium.com/tensorflow/fitting-larger-networks-into-memory-583e3c758ff9

https://arxiv.org/pdf/1604.06174.pdf
https://medium.com/tensorflow/fitting-larger-networks-into-memory-583e3c758ff9

Cheaper approximation: Transformer → Conformer

Conformer is an alternative to Transformer that employs a separable self-attention layer with linear GPU

memory complexity (as opposed to Transformer’s quadratic complexity) and is augmented with additional

convolutional layers to model short-distance attention

Mitra, Hofstätter, Zamani, and Craswell. Conformer-Kernel with Query Term Independence for Document Retrieval. ArXiv preprint. (2020)

Mitra, Hofstätter, Zamani, and Craswell. Conformer-Kernel with Query Term Independence at TREC 2020 Deep Learning Track. In Proc. TREC. (2020)

Mitra, Hofstätter, Zamani, and Craswell. Improving Transformer-Kernel Ranking Model Using Conformer and Query Term Independence. In Proc. SIGIR. (2021)

TREC 2020 Deep Learning Track

(Document Ranking Task)

https://arxiv.org/pdf/2007.10434.pdf
https://trec.nist.gov/pubs/trec29/papers/MSAI.DL.pdf
https://dl.acm.org/doi/pdf/10.1145/3404835.3463049

Reduce the task: Passage-based document ranking

Hofstätter, Zamani, Mitra, Craswell, and Hanbury. Local Self-Attention over Long Text for Efficient Document Retrieval. In Proc. SIGIR. (2020)

Hofstätter, Mitra, Zamani, Craswell, and Hanbury. Intra-Document Cascading: Learning to Select Passages for Neural Document Ranking. In Proc. SIGIR. (2021)

Kazai, Mitra, Dong, Zamani, Craswell, and Yang. Less is Less: When Are Snippets Insufficient for Human vs Machine Relevance Estimation? In Proc. ECIR. (2022)

Strategy 1: Run BERT on first-k tokens from the document

Considering only the first-k tokens leads to underestimation of relevance and consequently

under-retrieval of longer documents (Hofstätter et al., 2020). Recent studies (Kazai et al., 2022)

have also analyzed when single snippets are insufficient for both human and machine learning

based relevance estimation.

Strategy 2: Run BERT on multiple windows of k-tokens each from the document

This is the approach proposed by Hofstätter et al. (2020). However, the number of windows can be large

corresponding to longer documents and running BERT too many times per query-document pair can also be

prohibitively costly.

Strategy 3: Run BERT on windows of text pre-selected using cheaper models

This is the approach proposed by Hofstätter et al. (2021). The approach

(IDCM) was motivated by cascaded ranking pipelines, but in this case the

cascades are employed within-document for passage selection.

https://dl.acm.org/doi/pdf/10.1145/3397271.3401224
https://dl.acm.org/doi/pdf/10.1145/3404835.3462889
https://link.springer.com/chapter/10.1007/978-3-030-99739-7_18
https://dl.acm.org/doi/pdf/10.1145/3397271.3401224
https://link.springer.com/chapter/10.1007/978-3-030-99739-7_18
https://dl.acm.org/doi/pdf/10.1145/3397271.3401224
https://dl.acm.org/doi/pdf/10.1145/3404835.3462889

Intra-Document
Cascaded Model (IDCM)

We employ a cascaded architecture: a cheaper model

ranks-and-prunes candidate passages and costlier BERT

model inspects only selected passages from the document

The cheaper model is trained via knowledge distillation

from the BERT model

Hofstätter, Mitra, Zamani, Craswell, and Hanbury. Intra-Document Cascading: Learning to Select Passages for Neural Document Ranking. In Proc. SIGIR. (2021)

https://dl.acm.org/doi/pdf/10.1145/3404835.3462889

Challenges in scaling
BERT to full retrieval

Broadly two sets of approaches have emerged:
Dense retrieval and Query Term Independent

(QTI) models; both precompute document
representations at indexing time and require

very little computations at query response time

Mitra, Rosset, Hawking, Craswell, Diaz, and Yilmaz. Incorporating Query Term Independence Assumption for Efficient Retrieval and Ranking Using Deep Neural Networks. ArXiv preprint. (2019)

Mitra, Hofstätter, Zamani, and Craswell. Conformer-Kernel with Query Term Independence for Document Retrieval. ArXiv preprint. (2020)

Mitra, Hofstätter, Zamani, and Craswell. Conformer-Kernel with Query Term Independence at TREC 2020 Deep Learning Track. In Proc. TREC. (2020)

Mitra, Hofstätter, Zamani, and Craswell. Improving Transformer-Kernel Ranking Model Using Conformer and Query Term Independence. In Proc. SIGIR. (2021)

Nogueira and Cho (2019)

Dense retrieval: Xiong et al. (2021), Qu et al.

(2021), Hofstätter et al. (2021), and others

QTI: Mitra et al. (2019), Nogueira et al.

(2019), Dai and Callan (2020), and others

https://arxiv.org/pdf/1907.03693.pdf
https://arxiv.org/pdf/2007.10434.pdf
https://trec.nist.gov/pubs/trec29/papers/MSAI.DL.pdf
https://dl.acm.org/doi/pdf/10.1145/3404835.3463049
https://arxiv.org/pdf/1901.04085.pdf
https://openreview.net/pdf?id=zeFrfgyZln
https://aclanthology.org/2021.naacl-main.466.pdf
https://dl.acm.org/doi/abs/10.1145/3404835.3462891
https://arxiv.org/pdf/1907.03693.pdf
https://arxiv.org/pdf/1904.08375.pdf
https://dl.acm.org/doi/pdf/10.1145/3397271.3401204

A note about distillation

A popular recipe involves pretraining/finetuning large models and
then knowledge distillation to smaller models that can be deployed in
real-world retrieval systems

Pretrained model
e.g., 24-layer BERT

Finetuned model
e.g., 24-layer BERT

Distilled

model
e.g., smaller

model, or dense

retriever, or QTI,

or early-stage

cascade model

Machine Learning for Retrieval Efficiency

In IR, predictive machine learning has largely been employed for relevance

estimation

Kraska et al. (2018) were one of the earliest to propose learned index structures

where predictive machine learning is employed to speed up search over classical

data structures

Opinion: I believe there’s a significant opportunity to employ deep learning and

other machine learning approaches to directly optimize for efficiency in our

search and recommendation stacks

Let’s look at an example…

https://dl.acm.org/doi/pdf/10.1145/3183713.3196909

Large scale IR systems trade-off search result quality and query response time

In Bing, we have a candidate generation stage followed by multiple rank and prune stages

Typically, we apply machine learning in the re-ranking stages

In this work, we explore reinforcement learning for effective and efficient candidate generation

Rosset, Jose, Ghosh, Mitra, and Tiwary. Optimizing Query Evaluations Using Reinforcement Learning for Web Search. In Proc. SIGIR. (2018)

https://dl.acm.org/doi/pdf/10.1145/3209978.3210127

In Bing, the index is distributed over multiple machines

For candidate generation, on each machine the documents are linearly scanned using a match plan

Rosset, Jose, Ghosh, Mitra, and Tiwary. Optimizing Query Evaluations Using Reinforcement Learning for Web Search. In Proc. SIGIR. (2018)

https://dl.acm.org/doi/pdf/10.1145/3209978.3210127

When a query comes in, it is automatically

categorized, and a pre-defined match plan

is selected

A match rule defines the condition that a

document should satisfy to be selected as a

candidate

A match plan consists of a sequence of

match rules, and corresponding stopping

criteria

The stopping criteria decides when the

index scan using a particular match rule

should terminate—and if the matching

process should continue with the next match

rule, or conclude, or reset to the beginning

of the index

Rosset, Jose, Ghosh, Mitra, and Tiwary. Optimizing Query Evaluations Using Reinforcement Learning for Web Search. In Proc. SIGIR. (2018)

https://dl.acm.org/doi/pdf/10.1145/3209978.3210127

Match plans influence the

trade-off between

effectiveness and efficiency

E.g., long queries with rare

intents may require expensive

match plans that consider

body text and search deeper

into the index

In contrast, for popular

navigational queries a shallow

scan against URL and title

metastreams may be sufficient

Rosset, Jose, Ghosh, Mitra, and Tiwary. Optimizing Query Evaluations Using Reinforcement Learning for Web Search. In Proc. SIGIR. (2018)

https://dl.acm.org/doi/pdf/10.1145/3209978.3210127

E.g.,

Query: halloween costumes

Match rule: mrA → (halloween ∈ A|U|B|T) ∧ (costumes ∈ A|U|B|T)

Query: facebook login

Match rule: mrB → (facebook ∈ U|T)

Rosset, Jose, Ghosh, Mitra, and Tiwary. Optimizing Query Evaluations Using Reinforcement Learning for Web Search. In Proc. SIGIR. (2018)

https://dl.acm.org/doi/pdf/10.1145/3209978.3210127

During execution, two accumulators are tracked

u: the number of blocks accessed from disk

v: the cum. number of term matches in all inspected documents

A stopping criteria sets thresholds for each – when either thresholds are met, the scan using

that particular match rule terminates

Matching may then continue with a new match rule, or terminate, or re-start from beginning

Rosset, Jose, Ghosh, Mitra, and Tiwary. Optimizing Query Evaluations Using Reinforcement Learning for Web Search. In Proc. SIGIR. (2018)

https://dl.acm.org/doi/pdf/10.1145/3209978.3210127

Optimizing query evaluations using reinforcement learning

Learn a policy πθ : S → A which maximizes the

cumulative discounted reward R, where γ is the

discount rate

We employ table-based Q learning

State space: index blocks accessed (ut) and term

matches (vt)

Action space:

Reward function:

g(di) is the relevance of the ith document estimated based on

the subsequent L1 ranker score—considering only top n

documents

index

match rule
relevance discounted by

index blocks accessed

agent

accumulators

(u, v)

Rosset, Jose, Ghosh, Mitra, and Tiwary. Optimizing Query Evaluations Using Reinforcement Learning for Web Search. In Proc. SIGIR. (2018)

https://dl.acm.org/doi/pdf/10.1145/3209978.3210127

In summary…

Complex trade-offs

between different costs

makes benchmarking

challenging

Typical playbook for

efficiency: find cheaper

approximation, trade-off

other costs, reduce task

Machine learning can

be employed to directly

improve efficiency of

large-scale IR systems

How can we create a

shared task to encourage

more efficient deep

learning approaches for IR?

What would deep learning

models for IR look like if

designed with specific

retrieval data-structures in

mind from the start?

What are the key

opportunities to employ

predictive machine

learning to speed up large-

scale retrieval systems?Q
u

e
st

io
n

s
to

th
e
 a

u
d

ie
n

c
e
…

@UnderdogGeek bmitra@microsoft.com

Thank you!

