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Complex trade-offs 

between different costs 

makes benchmarking 

challenging

Typical playbook for 

efficiency: find cheaper 

approximation, trade-off 

other costs, reduce task

Machine learning can 

be employed to directly 

improve efficiency of 

large-scale IR systems

Key points:



Challenges of 

benchmarking 

for efficiency

What do we measure and what do 

we control for? How do we capture 

trade-offs between measures?

What stages of the pipeline can we 

evaluate?

How do we test the benchmark for 

construct validity and prevent 

negative externalities?

SustaiNLP (2020) Shared Task
Website: https://sites.google.com/view/sustainlp2020/shared-task

Paper: https://aclanthology.org/2020.sustainlp-1.24.pdf

Benchmarks effectiveness and inference-time 

energy-consumption

(Some relevant examples from our NLP peers)

NeurIPS 2020 EfficientQA Competition
Website: https://efficientqa.github.io/

Paper: http://proceedings.mlr.press/v133/min21a/min21a.pdf

Benchmarks effectiveness while grouping submitted 

systems by their inference-time docker image size

ELUE (Efficient Language Understanding Evaluation)
Website: http://eluebenchmark.fastnlp.top/

Paper: https://txsun1997.github.io/papers/elue_paper.pdf

(Benchmarks effectiveness, number of model 

parameters, and inference-time FLOPs)

What would a TREC Neural Efficiency Track look like?

https://sites.google.com/view/sustainlp2020/shared-task
https://aclanthology.org/2020.sustainlp-1.24.pdf
https://efficientqa.github.io/
http://proceedings.mlr.press/v133/min21a/min21a.pdf
http://eluebenchmark.fastnlp.top/
https://txsun1997.github.io/papers/elue_paper.pdf


Benchmarking by jointly considering effectiveness, 
efficiency, and robustness

Hofstätter, Craswell, Mitra, Zamani, and Hanbury. Are We There Yet? A Decision Framework for Replacing Term-Based Retrieval with Dense Retrieval Systems. ArXiv preprint. (2022)

A preliminary framework:

• Identify key measures of effectiveness, efficiency, and robustness

• Measures can either be traded-off against each other, or act as 

guardrails

• Apply value-laden and business-informed trade-offs between 

cost and robustness measures to define aggregate measures, e.g.,

• Identify the set of acceptable solutions (again) based on value-

laden and business-informed trade-offs decision boundaries

https://arxiv.org/pdf/2206.12993.pdf


Developing more efficient neural IR models

This playbook has been useful in allowing explorations of more 

ambitious architectures and then reducing their costs / 

footprints to make them practically deployable in large 

commercial settings

However, we should ask:

• Would we build different models if we are informed by 

broader system design (data structures and algorithms) and 

cost considerations from the very start?

• Are groups with access to large compute resources 

adequately incentivized to consider efficiency as early as 

possible in the development process, especially given that 

large compute resources can be a competitive advantage?

• Are we missing out on use-cases where machine learning is 

employed specifically to improve efficiency, instead of 

effectiveness?

Identify key 

efficiency 

bottlenecks and 

costs

Find cheaper 

approximations, or 

trade-off with other 

costs, or reduce the 

task

Develop more 

complicated 

models optimizing 

only for 

effectiveness
A typical 

model 

development 

playbook



Case studies: Scaling BERT-based relevance models to 
long documents and full retrieval settings

Nogueira and Cho (2019)

How do we scale to 

longer documents?

How do we scale to 

full retrieval from 

large collections?

Bottleneck: Peak GPU 

memory during training

Challenge: Collection size 

vs.  expected online query 

response time

https://arxiv.org/pdf/1901.04085.pdf


Challenges in scaling 
BERT to longer inputs

At training time, the GPU memory requirement for 

BERT’s self-attention layers grows quadratically w.r.t. to 

input length

The quadratic complexity is a direct result of storing all 

the 𝑛2-dimensional attention matrices in GPU memory 

during training for easier backpropagation

Potential workarounds:

• Trade-off GPU memory and training time by 

proactively releasing GPU memory during forward 

pass at the cost of redundant re-computations 

during backward pass

• Find cheaper approximation to self-attention layers

• Reduce the input space by running BERT on select 

passages in the document



Trade-off GPU memory and training time using 
gradient checkpointing

At training time, during the forward-pass the model 

caches all intermediate outputs in GPU memory so 

that during backward-pass we can easily compute 

the gradients of a layer’s outputs w.r.t. its inputs

Under gradient checkpointing (Chen et al., 2016), in 

contrast, the model only saves intermediate outputs 

at specific checkpoints; during the backward-pass, 

missing intermediate outputs are recomputed based 

on the closed preceding checkpoint(s)

For Transformers, this allows us to store only one 

𝑛2-dimensional attention matrix in GPU memory at 

any given time!

Without gradient checkpointing:

With gradient checkpointing: checkpoint

Stored in GPU memory

https://medium.com/tensorflow/fitting-larger-networks-into-memory-583e3c758ff9

https://arxiv.org/pdf/1604.06174.pdf
https://medium.com/tensorflow/fitting-larger-networks-into-memory-583e3c758ff9


Cheaper approximation: Transformer → Conformer

Conformer is an alternative to Transformer that employs a separable self-attention layer with linear GPU 

memory complexity (as opposed to Transformer’s quadratic complexity) and is augmented with additional 

convolutional layers to model short-distance attention

Mitra, Hofstätter, Zamani, and Craswell. Conformer-Kernel with Query Term Independence for Document Retrieval. ArXiv preprint. (2020)

Mitra, Hofstätter, Zamani, and Craswell. Conformer-Kernel with Query Term Independence at TREC 2020 Deep Learning Track. In Proc. TREC. (2020)

Mitra, Hofstätter, Zamani, and Craswell. Improving Transformer-Kernel Ranking Model Using Conformer and Query Term Independence. In Proc. SIGIR. (2021) 

TREC 2020 Deep Learning Track

(Document Ranking Task)

https://arxiv.org/pdf/2007.10434.pdf
https://trec.nist.gov/pubs/trec29/papers/MSAI.DL.pdf
https://dl.acm.org/doi/pdf/10.1145/3404835.3463049


Reduce the task: Passage-based document ranking

Hofstätter, Zamani, Mitra, Craswell, and Hanbury. Local Self-Attention over Long Text for Efficient Document Retrieval. In Proc. SIGIR. (2020)

Hofstätter, Mitra, Zamani, Craswell, and Hanbury. Intra-Document Cascading: Learning to Select Passages for Neural Document Ranking. In Proc. SIGIR. (2021) 

Kazai, Mitra, Dong, Zamani, Craswell, and Yang. Less is Less: When Are Snippets Insufficient for Human vs Machine Relevance Estimation? In Proc. ECIR. (2022)

Strategy 1: Run BERT on first-k tokens from the document

Considering only the first-k tokens leads to underestimation of relevance and consequently 

under-retrieval of longer documents (Hofstätter et al., 2020). Recent studies (Kazai et al., 2022) 

have also analyzed when single snippets are insufficient for both human and machine learning 

based relevance estimation.

Strategy 2: Run BERT on multiple windows of k-tokens each from the document

This is the approach proposed by Hofstätter et al. (2020). However, the number of windows can be large 

corresponding to longer documents and running BERT too many times per query-document pair can also be 

prohibitively costly.

Strategy 3: Run BERT on windows of text pre-selected using cheaper models

This is the approach proposed by Hofstätter et al. (2021). The approach 

(IDCM) was motivated by cascaded ranking pipelines, but in this case the 

cascades are employed within-document for passage selection.

https://dl.acm.org/doi/pdf/10.1145/3397271.3401224
https://dl.acm.org/doi/pdf/10.1145/3404835.3462889
https://link.springer.com/chapter/10.1007/978-3-030-99739-7_18
https://dl.acm.org/doi/pdf/10.1145/3397271.3401224
https://link.springer.com/chapter/10.1007/978-3-030-99739-7_18
https://dl.acm.org/doi/pdf/10.1145/3397271.3401224
https://dl.acm.org/doi/pdf/10.1145/3404835.3462889


Intra-Document 
Cascaded Model (IDCM)

We employ a cascaded architecture: a cheaper model 

ranks-and-prunes candidate passages and costlier BERT 

model inspects only selected passages from the document

The cheaper model is trained via knowledge distillation 

from the BERT model

Hofstätter, Mitra, Zamani, Craswell, and Hanbury. Intra-Document Cascading: Learning to Select Passages for Neural Document Ranking. In Proc. SIGIR. (2021) 

https://dl.acm.org/doi/pdf/10.1145/3404835.3462889


Challenges in scaling 
BERT to full retrieval 

Broadly two sets of approaches have emerged: 
Dense retrieval and Query Term Independent 

(QTI) models; both precompute document 
representations at indexing time and require 

very little computations at query response time

Mitra, Rosset, Hawking, Craswell, Diaz, and Yilmaz. Incorporating Query Term Independence Assumption for Efficient Retrieval and Ranking Using Deep Neural Networks. ArXiv preprint. (2019)

Mitra, Hofstätter, Zamani, and Craswell. Conformer-Kernel with Query Term Independence for Document Retrieval. ArXiv preprint. (2020)

Mitra, Hofstätter, Zamani, and Craswell. Conformer-Kernel with Query Term Independence at TREC 2020 Deep Learning Track. In Proc. TREC. (2020)

Mitra, Hofstätter, Zamani, and Craswell. Improving Transformer-Kernel Ranking Model Using Conformer and Query Term Independence. In Proc. SIGIR. (2021) 

Nogueira and Cho (2019)

Dense retrieval: Xiong et al. (2021), Qu et al. 

(2021), Hofstätter et al. (2021), and others 

QTI: Mitra et al. (2019), Nogueira et al. 

(2019), Dai and Callan (2020), and others  

https://arxiv.org/pdf/1907.03693.pdf
https://arxiv.org/pdf/2007.10434.pdf
https://trec.nist.gov/pubs/trec29/papers/MSAI.DL.pdf
https://dl.acm.org/doi/pdf/10.1145/3404835.3463049
https://arxiv.org/pdf/1901.04085.pdf
https://openreview.net/pdf?id=zeFrfgyZln
https://aclanthology.org/2021.naacl-main.466.pdf
https://dl.acm.org/doi/abs/10.1145/3404835.3462891
https://arxiv.org/pdf/1907.03693.pdf
https://arxiv.org/pdf/1904.08375.pdf
https://dl.acm.org/doi/pdf/10.1145/3397271.3401204


A note about distillation

A popular recipe involves pretraining/finetuning large models and 
then knowledge distillation to smaller models that can be deployed in 
real-world retrieval systems

Pretrained model
e.g., 24-layer BERT

Finetuned model
e.g., 24-layer BERT

Distilled 

model
e.g., smaller 

model, or dense 

retriever, or QTI, 

or early-stage 

cascade model



Machine Learning for Retrieval Efficiency

In IR, predictive machine learning has largely been employed for relevance 

estimation

Kraska et al. (2018) were one of the earliest to propose learned index structures 

where predictive machine learning is employed to speed up search over classical 

data structures

Opinion: I believe there’s a significant opportunity to employ deep learning and 

other machine learning approaches to directly optimize for efficiency in our 

search and recommendation stacks

Let’s look at an example…

https://dl.acm.org/doi/pdf/10.1145/3183713.3196909


Large scale IR systems trade-off search result quality and query response time

In Bing, we have a candidate generation stage followed by multiple rank and prune stages

Typically, we apply machine learning in the re-ranking stages

In this work, we explore reinforcement learning for effective and efficient candidate generation

Rosset, Jose, Ghosh, Mitra, and Tiwary. Optimizing Query Evaluations Using Reinforcement Learning for Web Search. In Proc. SIGIR. (2018)

https://dl.acm.org/doi/pdf/10.1145/3209978.3210127


In Bing, the index is distributed over multiple machines

For candidate generation, on each machine the documents are linearly scanned using a match plan

Rosset, Jose, Ghosh, Mitra, and Tiwary. Optimizing Query Evaluations Using Reinforcement Learning for Web Search. In Proc. SIGIR. (2018)

https://dl.acm.org/doi/pdf/10.1145/3209978.3210127


When a query comes in, it is automatically 

categorized, and a pre-defined match plan 

is selected

A match rule defines the condition that a 

document should satisfy to be selected as a 

candidate 

A match plan consists of a sequence of 

match rules, and corresponding stopping 

criteria

The stopping criteria decides when the 

index scan using a particular match rule 

should terminate—and if the matching 

process should continue with the next match 

rule, or conclude, or reset to the beginning 

of the index

Rosset, Jose, Ghosh, Mitra, and Tiwary. Optimizing Query Evaluations Using Reinforcement Learning for Web Search. In Proc. SIGIR. (2018)

https://dl.acm.org/doi/pdf/10.1145/3209978.3210127


Match plans influence the 

trade-off between 

effectiveness and efficiency

E.g., long queries with rare 

intents may require expensive 

match plans that consider 

body text and search deeper 

into the index

In contrast, for popular 

navigational queries a shallow 

scan against URL and title 

metastreams may be sufficient

Rosset, Jose, Ghosh, Mitra, and Tiwary. Optimizing Query Evaluations Using Reinforcement Learning for Web Search. In Proc. SIGIR. (2018)

https://dl.acm.org/doi/pdf/10.1145/3209978.3210127


E.g.,

Query: halloween costumes

Match rule: mrA → (halloween ∈ A|U|B|T ) ∧ (costumes ∈ A|U|B|T )

Query: facebook login

Match rule: mrB → (facebook ∈ U|T )

Rosset, Jose, Ghosh, Mitra, and Tiwary. Optimizing Query Evaluations Using Reinforcement Learning for Web Search. In Proc. SIGIR. (2018)

https://dl.acm.org/doi/pdf/10.1145/3209978.3210127


During execution, two accumulators are tracked

u: the number of blocks accessed from disk

v: the cum. number of term matches in all inspected documents

A stopping criteria sets thresholds for each – when either thresholds are met, the scan using 

that particular match rule terminates

Matching may then continue with a new match rule, or terminate, or re-start from beginning

Rosset, Jose, Ghosh, Mitra, and Tiwary. Optimizing Query Evaluations Using Reinforcement Learning for Web Search. In Proc. SIGIR. (2018)

https://dl.acm.org/doi/pdf/10.1145/3209978.3210127


Optimizing query evaluations using reinforcement learning

Learn a policy πθ : S → A which maximizes the 

cumulative discounted reward R, where γ is the 

discount rate

We employ table-based Q learning

State space: index blocks accessed (ut) and term 

matches (vt)

Action space:

Reward function:

g(di) is the relevance of the ith document estimated based on 

the subsequent L1 ranker score—considering only top n 

documents

index

match rule
relevance discounted by 

index blocks accessed

agent

accumulators

(u, v)

Rosset, Jose, Ghosh, Mitra, and Tiwary. Optimizing Query Evaluations Using Reinforcement Learning for Web Search. In Proc. SIGIR. (2018)

https://dl.acm.org/doi/pdf/10.1145/3209978.3210127


In summary…

Complex trade-offs 

between different costs 

makes benchmarking 

challenging

Typical playbook for 

efficiency: find cheaper 

approximation, trade-off 

other costs, reduce task

Machine learning can 

be employed to directly 

improve efficiency of 

large-scale IR systems

How can we create a 

shared task to encourage 

more efficient deep 

learning approaches for IR?

What would deep learning 

models for IR look like if 

designed with specific 

retrieval data-structures in 

mind from the start?

What are the key 

opportunities to employ 

predictive machine 

learning to speed up large-

scale retrieval systems?Q
u

e
st

io
n

s 
to

 

th
e
 a

u
d

ie
n

c
e
…

@UnderdogGeek bmitra@microsoft.com

Thank you!


