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efficient (“working quickly and without waste”)

effective ("having the desired effect”)

Source: https://en.wiktionary.org/wiki/efficient
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Key points:

Q- Complex trade-offs
between different costs
makes benchmarking
challenging

Q- Typical playbook for
efficiency: find cheaper
approximation, trade-off
other costs, reduce task

‘O- Machine learning can
be employed to directly
improve efficiency of
large-scale IR systems




Challenges of
benchmarking
for efficiency

What do we measure and what do
we control for? How do we capture
trade-offs between measures?

What stages of the pipeline can we
evaluate?

How do we test the benchmark for
construct validity and prevent
negative externalities?

(Some relevant examples from our NLP peers)

SustaiNLP
2020

SustaiNLP (2020) Shared Task

Website: https://sites.google.com/view/sustainlp2020/shared-task
Paper: https://aclanthology.org/2020.sustainlp-1.24.pdf

Benchmarks effectiveness and inference-time
energy-consumption

NeurlPS 2020 EfficientQA Competition
Website: https://efficientga.github.io/
Paper: http://proceedings.mlr.press/vi33/min21a/min21a.pdf

Benchmarks effectiveness while grouping submitted
systems by their inference-time docker image size

ELUE (Efficient Language Understanding Evaluation)
Website: http://eluebenchmark.fastnlp.top
Paper: https://txsun1997.qithub.io/papers/elue paper.pdf

(Benchmarks effectiveness, number of model
parameters, and inference-time FLOPs)

What would a TREC Neural Efficiency Track look like?

First Workshop on Simple and
Efficient Natural Language
Processing

Shared Task: Call for Submissions

SustaiNLP 2020 (co-located with EMNLP2020) is organizing a shared task to promote the development of effective,
energy-efficient models for difficult NLU tasks. This shared task is centered around the SuperGLUE benchmark, which
tests a system’s performance across a diverse set of eight NLU tasks. In addition to the standard SuperGLUE performance

metrics, the shared task will evaluate the energy consumption of each submission while processing the test data.

Efficient Open-Domain Question
Answering

The official website for the open domain question answering challenge
at NeurIPS 2020.

B ELUE

ELUE (Efficient Language Understanding Evaluation) is a standard benchmark
for efficient NLP models.

e ELUE supports online evaluation for model performance, FLOPs, and
number of parameters.

e ELUE is an open-source platform that can facilitate future research. Many
compressed models and early exiting models have been reproduced and
evaluated on ELUE. All of the results are publicly accessible.

e ELUE provides an online leaderboard that uses a specific metric to measure
how much a submission oversteps the current Pareto front. ELUE leaderboard
also maintains several separate tracks for models with different sizes.

e ELUE covers six NLP datasets spanning sentiment analysis, natural
language inference, similarity and paraphrase tasks.
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Benchmarking by jointly considering effectiveness,
efficiency, and robustness
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Hofstatter, Craswell, Mitra, Zamani, and Hanbury. Are We There Yet? A Decision Framework for Replacing Term-Based Retrieval with Dense Retrieval Systems. ArXiv preprint. (2022)
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Developing more efficient neural IR models

This playbook has been useful in allowing explorations of more
ambitious architectures and then reducing their costs / Develop more

E%?;F:T:ierwfcsiatlc)sr;?iie them practically deployable in large complicated ld?ﬁ?tl'fy key
gs o ernciency
models optimizing bottlenecks and

However, we should ask: only for A typical costs
«  Would we build different models if we are informed by effectiveness model

broader system design (data structures and algorithms) and development

cost considerations from the very start? lavbook

playboo

» Are groups with access to large compute resources
adequately incentivized to consider efficiency as early as
possible in the development process, especially given that
large compute resources can be a competitive advantage?

Find cheaper
approximations, or

 Are we missing out on use-cases where machine learning is _

employed specifically to improve efficiency, instead of trade-off with other

effectiveness? costs, or reduce the
task



Case studies: Scaling BERT-based relevance models to
long documents and full retrieval settings

How do we scale to Bottleneck: Peak GPU
\——""::::::‘:7 Ionger documents? memory during training
q
__________ "‘~:::::::~.~\ How do we scale to Challenge: Collection size
o ! g full retrieval from vs. expected online query
---------- large collections? response time

Nogueira and Cho (2019)

PASSAGE RE-RANKING WITH BERT
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ABSTRACT

Recently, neural models pretrained on a language modeling task, such as
ELMo (Peters et al., 2017), OpenAl GPT (Radford et al., 2018), and BERT (De-


https://arxiv.org/pdf/1901.04085.pdf

Challenges in scaling
BERT to longer inputs

At training time, the GPU memory requirement for
BERT's self-attention layers grows quadratically w.r.t. to
input length

The quadratic complexity is a direct result of storing all
the n%-dimensional attention matrices in GPU memory
during training for easier backpropagation

Potential workarounds:

 Trade-off GPU memory and training time by
proactively releasing GPU memory during forward
pass at the cost of redundant re-computations
during backward pass

» Find cheaper approximation to self-attention layers

» Reduce the input space by running BERT on select
passages in the document
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Trade-off GPU memory and training time using

gradient checkpointing

At training time, during the forward-pass the model
caches all intermediate outputs in GPU memory so
that during backward-pass we can easily compute
the gradients of a layer’s outputs w.r.t. its inputs

Under gradient checkpointing (Chen et al., 2016), in
contrast, the model only saves intermediate outputs
at specific checkpoints; during the backward-pass,
missing intermediate outputs are recomputed based
on the closed preceding checkpoint(s)

For Transformers, this allows us to store only one
n?-dimensional attention matrix in GPU memory at
any given time!

Stored in GPU memory
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https://medium.com/tensorflow/fitting-larger-networks-into-memory-583e3c758ff9
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Cheaper approximation: Transtormer - Conformer

Conformer is an alternative to Transformer that employs a separable self-attention layer with linear GPU
memory complexity (as opposed to Transformer’s quadratic complexity) and is augmented with additional
convolutional layers to model short-distance attention

Separable-Self-Attention(Q, K, V) = ®(Q) - A
where, A = ®(KT)-V
TREC 2020 Deep Learning Track

(Document Ranking Task)
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Figure 2: Comparison of peak GPU Memory Usage in MB, '
across all four GPUs, when employing Transformers vs. 03
Conformers. (a) NDCG@10

Mitra, Hofstatter, Zamani, and Craswell. Conformer-Kernel with Query Term Independence for Document Retrieval. ArXiv preprint. (2020)
Mitra, Hofstatter, Zamani, and Craswell. Conformer-Kernel with Query Term Independence at TREC 2020 Deep Learning Track. In Proc. TREC. (2020)
Mitra, Hofstatter, Zamani, and Craswell. Improving Transformer-Kernel Ranking Model Using Conformer and Query Term Independence. In Proc. SIGIR. (2021)
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Reduce the task: Passage-based document ranking

Strategy 1: Run BERT on first-k tokens from the document o
Considering only the first-k tokens leads to underestimation of relevance and consequently SZZZ:
under-retrieval of longer documents (Hofstatter et al., 2020). Recent studies (Kazai et al., 2022) £ 0002}t
have also analyzed when single snippets are insufficient for both human and machine learning 0.001 ; b STt by T
\based relevance estimation. 0000 —— a0 o800 )
Strategy 2: Run BERT on multiple windows of k-tokens each from the document N e
This is the approach proposed by Hofstatter et al. (2020). However, the number of windows can be large Y . &l

-

o
wn
=

corresponding to longer documents and running BERT too many times per query-document pair can also be sef AN

prohibitively costly.
\ Maximum document length (first n) /
4 O )
Strategy 3: Run BERT on windows of text pre-selected using cheaper models  |= - % - ‘U””D -»UU- (‘((A\
This is the approach proposed by Hofstatter et al. (2021). The approach Document ;
(IDCM) was motivated by cascaded ranking pipelines, but in this case the
cascades are employed within-document for passage selection. Chear

\ classifier /

Hofstatter, Zamani, Mitra, Craswell, and Hanbury. Local Self-Attention over Long Text for Efficient Document Retrieval. In Proc. SIGIR. (2020)
Hofstatter, Mitra, Zamani, Craswell, and Hanbury. Intra-Document Cascading: Learning to Select Passages for Neural Document Ranking. In Proc. SIGIR. (2021)
Kazai, Mitra, Dong, Zamani, Craswell, and Yang. Less is Less: When Are Snippets Insufficient for Human vs Machine Relevance Estimation? In Proc. ECIR. (2022)
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Cascaded Model (IDCM

We employ a cascaded architecture: a cheaper model
ranks-and-prunes candidate passages and costlier BERT
model inspects only selected passages from the document

The cheaper model is trained via knowledge distillation

from the BERT model

vl

IDCM-CKS

IDCM-CK

All-BERT (512)

All-BERT (2,000) + B
TKL (2,000)

PARADE (2,000)

LS BN )

0.60 0.62 0.64 0.66 0.68 0.7

nDCG@10

(a) Throughput and nDCG@ 10 results on TREC DL 2019

(a) Throughput and nDCG@ 10 results on TREC DL 2019.

1400
1200 '1
=]
£ 1000 <4
(@]
& o?
~ 800
g V43
E '35_/4
S 600 ol
£ it o]
3 78
2 400
e e IDCM-CKS A
1 MIBERT (512)
A AL
2001 @ All-BERT (2,000) .
TKL (2,000)
+ PARADE (2,000)
0

0.32 0.34 0.36 0.38 0.40

MRR@10

(b) Throughput and MRR@ 10 results on MS MARCO Dev.

o Fast

i (Esm).-

O siow
[

Query Document

W -

\( Select k passages )

For each selected passage

O Single Passage Score Efficient Student
-E M : ETM
O Document Score BMOUE‘\[CK)

Query Passage Query Document

A_l_l

ETM . |
(e - P
d e - passage
(o]

o Passage Training o Full Document Training

(Pairwise: RankNet)

(Pairwise: RankNet)

o
eee0e . ® EM-—— 0 {Ps}>0
o

@ Query Term Vector
@ Document Term Vector
O Single Passage Score

O Document Score

Efficient Student
ESMJ \iogel (ck)

Effective Teacher
Model (BERT)

Passage Score
Aggregator

ETM

Figure 1: The IDCM architecture that consists of two cascading stages: @ To allow for long-document input, the first stage is a
lightweight and fast selection model. @ Only the top k passages from the selection model are scored with a costly BERT-based
scoring module to form the final document score.
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Figure 2: The staged training workflow of IDCM: @ Training the ETM (BERT) passage module @ Training the full model on a
document collection without selection (all available passages of a document are scored with ETM). ® The ESM (CK) selection
module is now trained via knowledge distillation using the ETM (BERT) scores as labels.
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Figure 4: Fraction of queries that can be answered in the given time-frame for re-ranking 100 documents with up to 2,000
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Hofstatter, Mitra, Zamani, Craswell, and Hanbury. Intra-Document Cascading: Learning to Select Passages for Neural Document Ranking. In Proc. SIGIR. (2021)
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Challenges in scaling
BERT to full retrieval

q |

¢

Nogueira and Cho (2019)

Broadly two sets of approaches have emerged:
Dense retrieval and Query Term Independent
(QTI) models; both precompute document
representations at indexing time and require
very little computations at query response time

Mitra, Rosset, Hawking, Craswell, Diaz, and Yilmaz. Incorporating Query Term Independence Assumption for Efficient Retrieval and Ranking Using Deep Neural Networks. ArXiv preprint. (2019)
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Dense retrieval: Xiong et al. (2021), Qu et al.
(2021), Hofstatter et al. (2021), and others
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QTI: Mitra et al. (2019), Nogueira et al.
(2019), Dai and Callan (2020), and others

Mitra, Hofstatter, Zamani, and Craswell. Conformer-Kernel with Query Term Independence for Document Retrieval. ArXiv preprint. (2020)

Mitra, Hofstatter, Zamani, and Craswell. Conformer-Kernel with Query Term Independence at TREC 2020 Deep Learning Track. In Proc. TREC. (2020)
Mitra, Hofstatter, Zamani, and Craswell. Improving Transformer-Kernel Ranking Model Using Conformer and Query Term Independence. In Proc. SIGIR. (2021)
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A note about distillation

A popular recipe involves pretraining/finetuning large models and
then knowledge distillation to smaller models that can be deployed in

real-world retrieval systems




Machine Learning for Retrieval Efficiency

In IR, predictive machine learning has largely been employed for relevance
estimation

Kraska et al. (2018) were one of the earliest to propose learned index structures
where predictive machine learning is employed to speed up search over classical
data structures

Opinion: | believe there’s a significant opportunity to employ deep learning and
other machine learning approaches to directly optimize for efficiency in our
search and recommendation stacks

Let’s look at an example...


https://dl.acm.org/doi/pdf/10.1145/3183713.3196909

Large scale IR systems trade-off search result quality and query response time

In Bing, we have a candidate generation stage followed by multiple rank and prune stages
Typically, we apply machine learning in the re-ranking stages

In this work, we explore reinforcement learning for effective and efficient candidate generation

R
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Rosset, Jose, Ghosh, Mitra, and Tiwary. Optimizing Query Evaluations Using Reinforcement Learning for Web Search. In Proc. SIGIR. (2018)
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In Bing, the index is distributed over multiple machines

For candidate generation, on each machine the documents are linearly scanned using a match plan
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Rosset, Jose, Ghosh, Mitra, and Tiwary. Optimizing Query Evaluations Using Reinforcement Learning for Web Search. In Proc. SIGIR. (2018)
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When a query comes in, it is automatically
categorized, and a pre-defined match plan
is selected

A match rule defines the condition that a

document should satisfy to be selected as a
candidate

mr,
A match plan consists of a sequence of 5 mr,
match rules, and corresponding stopping S
criteria £

The stopping criteria decides when the
index scan using a particular match rule
should terminate—and if the matching
process should continue with the next match
rule, or conclude, or reset to the beginning
of the index

Rosset, Jose, Ghosh, Mitra, and Tiwary. Optimizing Query Evaluations Using Reinforcement Learning for Web Search. In Proc. SIGIR. (2018)
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Match plans influence the
trade-off between
effectiveness and efficiency

F.g., long queries with rare
Intents may require expensive

. | >
match plans that consider § ; Rk
body text and search deeper S o, | > (terminate)
= ! ! ! |

into the index

In contrast, for popular
navigational queries a shallow
scan against URL and title
metastreams may be sufficient

Rosset, Jose, Ghosh, Mitra, and Tiwary. Optimizing Query Evaluations Using Reinforcement Learning for Web Search. In Proc. SIGIR. (2018)
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E.g.,

Query: halloween costumes

Match rule: mr, — (halloween € A|U|B|T ) A (costumes € A|U|B|T)

Query: facebook login

Match rule: mry — (facebook € U|T)

Rosset, Jose, Ghosh, Mitra, and Tiwary. Optimizing Query Evaluations Using Reinforcement Learning for Web Search. In Proc. SIGIR. (2018)
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During execution, two accumulators are tracked

u: the number of blocks accessed from disk

v: the cum. number of term matches in all inspected documents

A stopping criteria sets thresholds for each — when either thresholds are met, the scan using
that particular match rule terminates

Matching may then continue with a new match rule, or terminate, or re-start from beginning

Rosset, Jose, Ghosh, Mitra, and Tiwary. Optimizing Query Evaluations Using Reinforcement Learning for Web Search. In Proc. SIGIR. (2018)
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Optimizing query evaluations using reinforcement learning

Learn a policy g : S — A which maximizes the
cumulative discounted reward R, where v is the
discount rate

index

T
R = Zyrr(s;,a:) , 0<y<l1
t=0

We employ table-based Q learning

State space: index blocks accessed (u,) and term
matches (v,)

JS— (0

2 Q

accumulators "

relevance discounted by

match rule (U, v) :
index blocks accessed

Action space: A = {mry,...,mri} U {areset, astop }

Mgy
Reward function: 2 gld;)

ragent(sh ag) =
n-uUrsq

g(d) is the relevance of the i document estimated based on
the subsequent L1 ranker score—considering only top n
documents

N «—

agent

Rosset, Jose, Ghosh, Mitra, and Tiwary. Optimizing Query Evaluations Using Reinforcement Learning for Web Search. In Proc. SIGIR. (2018)
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[N summary...

Q- Complex trade-offs “O:- Typical playbook for “O- Machine learning can
between different costs efficiency: find cheaper be employed to directly
makes benchmarking approximation, trade-off improve efficiency of
challenging other costs, reduce task large-scale IR systems

29 How can we create a What would deep learning What are the key

§ S shared task to encourage models for IR look like if opportunities to employ

s 'g more efficient deep designed with specific predictive machine

g o learning approaches for IR? retrieval data-structures in learning to speed up large-

O < mind from the start? scale retrieval systems?

Thank you!
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