
Reduce, Reuse, Recycle: 

Green Information Retrieval Research

Harry Scells, Shengyao Zhuang, Guido Zuccon 
h.scells@uq.edu.au


The University of Queensland, Australia

mailto:h.scells@uq.edu.au


NLP
ML

[1] Strubell, E. et al. 2019. Energy and Policy Considerations for Deep Learning in NLP. Proceedings of the 57th Annual Meeting of 
the Association for Computational Linguistics



NLP
ML

[1] Strubell, E. et al. 2019. Energy and Policy Considerations for Deep Learning in NLP. Proceedings of the 57th Annual Meeting of 
the Association for Computational Linguistics

What about IR research?



But what are emissions?
• Energy: amount of work done 
• Measured in joules



But what are emissions?
• Energy: amount of work done 
• Measured in joules 

• Power: energy per unit time 
• Measured in watts; 1 watt = 1 joule/second

• kWh: energy consumed at a rate of 1 kilowatt for 1 hour



But what are emissions?
• Energy: amount of work done 
• Measured in joules 

• Power: energy per unit time 
• Measured in watts; 1 watt = 1 joule/second

• kWh: energy consumed at a rate of 1 kilowatt for 1 hour 

• Emissions: by-products created by producing power 
• Measured in kgCO2e; kilograms of carbon dioxide equivalent



NLP
ML

[1] Strubell, E. et al. 2019. Energy and Policy Considerations for Deep Learning in NLP. Proceedings of the 57th Annual Meeting of 
the Association for Computational Linguistics

What about IR research?
Isn’t this just retrieval efficiency?













Eff
ec

tiv
en

es
s

Efficiency



Eff
ec

tiv
en

es
s

Efficiency



Eff
ec

tiv
en

es
s

Efficiency



Eff
ec

tiv
en

es
s

Utilisation

Efficiency



Measuring emissions
• First, measure power consumption:



Measuring emissions
• First, measure power consumption:

pt =
Ω ⋅ t ⋅ (pc + pr + pg)

1000



Measuring emissions
• First, measure power consumption:

pt =
Ω ⋅ t ⋅ (pc + pr + pg)

1000watts



Measuring emissions
• First, measure power consumption:

pt =
Ω ⋅ t ⋅ (pc + pr + pg)

1000

PUE

watts



Measuring emissions
• First, measure power consumption:

pt =
Ω ⋅ t ⋅ (pc + pr + pg)

1000

PUE
Running Time

watts



Measuring emissions
• First, measure power consumption:

pt =
Ω ⋅ t ⋅ (pc + pr + pg)

1000

PUE
Running Time

CPU, RAM, GPU power draw

watts



Measuring emissions
• First, measure power consumption:


• Next, measure emissions:
pt =

Ω ⋅ t ⋅ (pc + pr + pg)
1000

PUE
Running Time

CPU, RAM, GPU power draw

watts



Measuring emissions
• First, measure power consumption:


• Next, measure emissions:

kgCO2e = θ ⋅ pt

pt =
Ω ⋅ t ⋅ (pc + pr + pg)

1000

PUE
Running Time

CPU, RAM, GPU power draw

watts



Measuring emissions
• First, measure power consumption:


• Next, measure emissions:

kgCO2e = θ ⋅ ptemissions

pt =
Ω ⋅ t ⋅ (pc + pr + pg)

1000

PUE
Running Time

CPU, RAM, GPU power draw

watts



Measuring emissions
• First, measure power consumption:


• Next, measure emissions:

kgCO2e = θ ⋅ ptemissions Power consumption 
of experiments

pt =
Ω ⋅ t ⋅ (pc + pr + pg)

1000

PUE
Running Time

CPU, RAM, GPU power draw

watts



Measuring emissions
• First, measure power consumption:


• Next, measure emissions:

kgCO2e = θ ⋅ ptemissions

avg. CO2e (kg) per kWh where 
experiments took place

Power consumption 
of experiments

pt =
Ω ⋅ t ⋅ (pc + pr + pg)

1000

PUE
Running Time

CPU, RAM, GPU power draw

watts



Measuring emissions
• First, measure power consumption:


• Next, measure emissions:


• Emissions of my search engine:

kgCO2e = θ ⋅ Δq ⋅ pq

pt =
Ω ⋅ t ⋅ (pc + pr + pg)

1000

PUE
Running Time

CPU, RAM, GPU power draw

watts

kgCO2e = θ ⋅ ptemissions

avg. CO2e (kg) per kWh where 
experiments took place

Power consumption 
of experiments



Measuring emissions
• First, measure power consumption:


• Next, measure emissions:


• Emissions of my search engine:

kgCO2e = θ ⋅ Δq ⋅ pq
Power consumption 

of a single query

pt =
Ω ⋅ t ⋅ (pc + pr + pg)

1000

PUE
Running Time

CPU, RAM, GPU power draw

watts

kgCO2e = θ ⋅ ptemissions

avg. CO2e (kg) per kWh where 
experiments took place

Power consumption 
of experiments



Measuring emissions
• First, measure power consumption:


• Next, measure emissions:


• Emissions of my search engine:

kgCO2e = θ ⋅ Δq ⋅ pq
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Measuring energy & emissions of your model



How many emissions do these methods produce 
to obtain an experimental result?
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a framework for IR practitioners to remain mindful 
of the potential costs of IR research
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Reduce

• straightforward: simply reduce the number of experiments 


• limit expensive computations, e.g., use CPU, FPGAs over 
GPU


• prior to starting any research or experiments, ask: How can I 
perform research with fewer resources? 


• Random Hyper-parameter Search 


• CPU-based Inference 
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Reuse

• reuse existing software artefacts such as data, code, or models


• take something existing and repurpose it for the same task it was 
devised for


• prior to starting any research or experiments, ask: How can I 
repurpose data, code, or other digital artefacts meant for one task 
to the same task? 


• Reuse Large Collections 


• Pre-indexing Common Collections 
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Recycle

• recycle existing software artefacts such as data, code, or models


• recycle: the action of repurposing an existing artefact for a task it 
was not originally intended for 


• prior to starting any research or experiments, ask: How can I 
repurpose existing data, code, or other digital artefacts meant for 
one task to a different task? 


• Neural Query Expansion 


• Passage expansion with TILDE 
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• but: increase model size for higher effectiveness may not apply to IR, as it 
does to NLP and ML 


• Likely trend in neural IR: go beyond PLMs designed for NLP but are specialised 
for IR -> pre-train for IR
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• DSI: end-to-end transformers that encapsulate entire indexing & searching 

architecture into single model 

• IR community at a turning point 
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