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But what are emissions?

* Energy: amount of work done
* Measured In joules
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But what are emissions?

* Power: energy per unit time

* Measured in watts; 1 watt = 1 joule/second
 kWh: energy consumed at a rate of 1 kilowatt for 1 hour
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But what are emissions?

* Energy: amount of work done
* Measured In joules

* Power: energy per unit time

 Measured in watts; 1 watt = 1 joule/second
 KWh: energy consumed at a rate of 1 kilowatt for 1 hour

* Emissions: by-products created by producing power
 Measured in kgCOze; kilograms of carbon dioxide equivalent
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What about IR research?

Isn’t thls jUSt retrieval efﬂmency’?
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Developing Energy Efficient Filtering Systems

Leif Azzopardi, Wim Vanderbauwhede, Mahmoud Moadeli
Dept. of Comp. Sci., University of Glasgow
Glasgow, United Kingdom

{leif, wim, mahmoudm}@dcs.gla.ac.uk

ABSTRACT host CPU NUMAIlink RC100 FPGA
. : : : (Itanium) interconnect ) | P1ade (Virtex-4)

Processing large volumes of information generally requires

. . : Scores .
massive amounts of computational power, which consumes . Algorithm
a significant amount of energy. An emerging challenge is the A—A—
development Of “environmentally friendly” systems that are " _ ............................................... RN -
not only efficient in terms of time, but also energy efficient. | .......................................................
In this poster, we outline our initial efforts at developing
greener filtering systems by employing Field Programmable : rSnP;An':Aory
Gate Arrays (FPGA) to perform the core information pro- :
cessing task. FPGAs enable code to be executed in parallel Document Profile
at a chip level, while consuming only a fraction of the power stream
of a standard (von Neuman style) processor. On a number
of test collections, we demonstrate that the FPGA filtering

system performs 10-20 times faster than the Itanium based
implementation, resulting in considerable energy savings. Figure 1: Schematic of FPGA-accelerated filtering

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval|: Systems 2. SYSTEM ARCHITECTURE

and Software: Performance evaluation An FPGA is a reconfigurable semiconductor device which
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Measuring emissions

* First, measure power consumption:
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* First, measure power consumption:

B Q -1 (pc+pr+pg)
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Measuring emissions

* First, measure power consumption:
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Measuring emissions

* First, measure power consumption:

PUE\
Q-1- (pc+pr+pg)
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Measuring emissions

* First, measure power consumption:

Running Time
PUE /

T~
Q-1- (pc+pr+pg)
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Measuring emissions

* First, measure power consumption:

Runnlng Time
PUE CPU, RAM, GPU power draw

Q1 <pc+pr+pg>/
1000

watts — Pt =
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Measuring emissions

* First, measure power consumption:

Runnlng Time
PUE CPU, RAM, GPU power draw

Q-1 <pc+pr+pg>/
1000

watts — P =

e Next, measure emissions:

THE UNIVERSITY

OF QUEENSLAND

AUSTRALIA
EEEEEEEEEEEE



Measuring emissions

* First, measure power consumption:

Runnlng Time
PUE CPU, RAM, GPU power draw

Q-1 <pc+pr+pg>/
1000

watts — P =

e Next, measure emissions:

kgCO_ e =0 p,
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Measuring emissions

* First, measure power consumption:

Runnlng Time
PUE CPU, RAM, GPU power draw

Q-1 <pc+pr+pg>/
1000

watts — P =

e Next, measure emissions:

emissions —/'kgCOze =0 - P
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Measuring emissions

e Next, measure emissions:

emissions /kgccze — 9 . pt /Power consumption

of experiments
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Measuring emissions

e Next, measure emissions:

avg. CO2e (kg) per kWh where
experiments took place

emissions /kgccze — 9 . pt /Power consumption

of experiments
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Measuring emissions

* First, measure power consumption:

Runnlng Time
PUE CPU, RAM, GPU power draw

Q-1 <pc+p,,+pg>/
1000

watts — P =

e Next, measure emissions:

avg. COze (kg) per kWh where
experiments took place

/ 5 _
emissions /kgccze — 9 . pt __—rower con_s.umptlon

of experiments

 Emissions of my search engine:
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Measuring emissions

* First, measure power consumption:

Runnlng Time
PUE CPU, RAM, GPU power draw

Q-1 <pc+pr+pg>/
1000

watts — P =

e Next, measure emissions:

avg. COze (kg) per kWh where
experiments took place

/ 5 _
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of experiments

 Emissions of my search engine:
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Measuring emissions

* First, measure power consumption:

Runnlng Time
PUE CPU, RAM, GPU power draw

Q-1 (pc+pr+pg>/
1000

watts — P =

e Next, measure emissions:

avg. COze (kg) per kWh where
experiments took place

/ 5 _
emissions /kgccze — 9 . pt __—rower con_s.umptlon

of experiments

 Emissions of my search engine:

No. queries issued
per unit time

k CO . H A/ o Power consumption (T)‘;% 33&%‘3‘,5;
A g ze o . q * pq of a Single query o Austers




Measuring energy & emissions of your model

Name CPU DRAM GPU Network | Repository

CodeCarbon [71]

pyJoules

energyusage [47]
Carbontracker [3]

Experiment Impact Tracker [33]

Cumulator [81]

https://github.com/mlco2/codecarbon
https://github.com/powerapi-ng/pyJoules
https://github.com/responsibleproblemsolving/energy-usage
https://github.com/lfwa/carbontracker
https://github.com/Breakend/experiment-impact-tracker
https://github.com/epfl-iglobalhealth/cumulator

NSNS
N\ X% NSNS
NSNSNSNANKS

N X X X X X%

from codecarbon 1mport EmissionsTracker

tracker = EmissionsTracker ()
tracker.start ()
# Experiment code goes here

E traCker.StOp() THEUNIVERSITY
OF QUEENSLAND
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How many emissions do these methods produce
to obtain an experimental result?

* Methods:
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How many emissions do these methods produce
to obtain an experimental result?

* Methods:
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How many emissions do these methods produce
to obtain an experimental result?

* Methods:
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How many emissions do these methods produce
to obtain an experimental result?

* Methods:
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How many emissions do these methods produce
to obtain an experimental result?

* Methods:
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How many emissions do these methods produce
to obtain an experimental result?

° MeOdS:
}. - BM25 a ”
’qam bd g J

. DPR g

140 Neural methods
s  produce considerably

g s~ More emissions than + monoBERT
S . traditional * 1ILDEv2 31’4
E, ,,.,;,l\ o]/ I
w 70 o
C
O
‘D 52.5
9
LIEJ 35
17.5
0
& A e 4
Q)Qq’ @?g\ QQ ;(Q\\’Q
& O
\/(b((\ O&O

THE UNIVERSITY
OF QUEENSLAND
AAAAAAAAA

CREATE CHANGE




How many emissions do these methods produce
to obtain an experimental result?
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How many emissions do these methods produce
to obtain an experimental result?
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How many emissions do these methods produce

Emissions (kgCO2e)

to obtain an experimental result?
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How many emissions do these methods produce
to obtain an experimental result?

Emissions (kgCO2e)
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What are the effectiveness-utilisation trade-offs of

- these methods?
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What are the effectiveness-utilisation trade-offs of

- these methods?
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a framework for IR practitioners to remain mindful
of the potential costs of IR research




Reduce
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Reduce

expend fewer resources
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e straightforward: simply reduce the number of experiments

* limit expensive computations, e.g., use CPU, FPGAs over
GPU

* prior to starting any research or experiments, ask: How can |
perform research with fewer resources?

 Random Hyper-parameter Search

E  CPU-based Inference
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repurpose resources intended for one task to the same task



e reuse existing software artefacts such as data, code, or models

» take something existing and repurpose it for the same task it was
devised for

e prior to starting any research or experiments, ask: How can |
repurpose data, code, or other digital artefacts meant for one task
to the same task?

* Reuse Large Collections
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E * Pre-indexing Common Collections
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repurpose resources intended for one task to a different task




e recycle existing software artefacts such as data, code, or models

* recycle: the action of repurposing an existing artefact for a task it
was not originally intended for

* prior to starting any research or experiments, ask: How can |
repurpose existing data, code, or other digital artefacts meant for
one task to a different task?

e Neural Query Expansion
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E  Passage expansion with TILDE




Outlook

 Larger neural methods = power-hungry hardware = utilisation of more power

* but: iIncrease model size for higher effectiveness may not apply to IR, as it
does to NLP and ML
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Outlook

 Larger neural methods = power-hungry hardware = utilisation of more power

* but: iIncrease model size for higher effectiveness may not apply to IR, as it
does to NLP and ML

* Likely trend in neural IR: go beyond PLMs designed for NLP but are specialised
for IR -> pre-train for IR

* more power and more emissions

 DSI: end-to-end transformers that encapsulate entire indexing & searching
architecture into single model
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* Bigger/more complex models
* Bigger collections
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Outlook

 Larger neural methods = power-hungry hardware = utilisation of more power

* but: iIncrease model size for higher effectiveness may not apply to IR, as it
does to NLP and ML

* Likely trend in neural IR: go beyond PLMs designed for NLP but are specialised
for IR -> pre-train for IR

* more power and more emissions

 DSI: end-to-end transformers that encapsulate entire indexing & searching
architecture into single model

IR community at a turning point
* Bigger/more complex models
* Bigger collections

* Let’s be mindful of the cost of IR research
 Power usage — $$%

 Emissions = COze .
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