
1

An Efficiency Study for 
SPLADE models

Carlos LASSANCE, Stéphane CLINCHANT



© 2021 NAVER LABS. All rights reserved.

• Goal: Study the efficiency of SPLADE models for sparse neural retrieval
• In domain: MSMARCO passage dataset
• Out-of-domain: 18 BEIR datasets

Introduction

large collection (e.g. 1B web pages)

re-ranking
high compute, precision oriented

ranked list of documents

2



© 2021 NAVER LABS. All rights reserved.

• Use the MLM output
• Max pooling over each token output
• Induce sparsity:

• ReLU over the output
• FLOPS [Paria et al 2020] regularization

• Estimate number of activations in a batch
• Proxy for total retrieval FLOPS

Introduction – SPLADE Recap

http://github.com/naver/splade

3



© 2020 NAVER LABS. All rights reserved.

Motivation: Findings from Wacky Weights
Mackenzie, Trotman and Lin, 2021

Findings: 
• Recent sparse models are 

slower than BM25
• SPLADE 50x slower on 

mono-thread evaluation

RQ: 
SPLADE quick as BM25?

4



First things first:
Is SPLADE efficient?

• Yes and No
• No: It does not optimize for the same things as sparse retrieval

• Released models are tuned for effectiveness, not efficiency
• Optimized for multi-thread retrieval of each query

• Measures FLOPS, not latency

• Yes: SPLADE is a family of models
• Control efficiency-effectiveness trade-off
• Can optimize for cpu mono-thread query retrieval:

• Focus more on query size than document size

5



Finding efficient SPLADE configurations

• I) Explore SPLADE family to find better configuration
• Small, Medium and Large versions

• II) Use latest available data (better distillation)

6



Our contribution

• Can we go further than those adjustments?

• III) Separating encoders
• Traditional SPLADE makes no difference between query and document
• Hard for the model to learn that sparsities may be different

• IV) Using L1 regularization instead of FLOPS on queries
• FLOPS is optimized for generating balanced indexes
• Queries need to be small, but don’t need to be balanced

• V) Unsupervised FLOPS+MLM training
• Improves the state of the network before pretraining
• Network already knows output should be sparse

7



© 2021 NAVER LABS. All rights reserved.

Results: Improvements add up

8



VI) Reducing query encoder latency

• VI-BT) Using a smaller query encoder (BERT-Tiny)
• Reduces the query encoder latency to almost 0 (43 ms -> 0.7ms)

• VI-SD) SPLADE doc
• No encoding
• *: without stop words

9



Comparison with SoTA sparse on in-domain data (MSMARCO)

10



Comparison on OOD (BEIR)

11

BEIR* creates an ensemble with BM25 to non BM25-baselines
Latency increases by 4 ms



© 2021 NAVER LABS. All rights reserved.

• Not exactly sure how to do it fairly
• Different software makes for different benchmark

• Comparing PISA/Anserini/JASS vs NMSlib/FAISS ?
• Example: How to be sure that all of them are warmed up correctly/fairly?

• Different optimizations
• Approximate KNN (Dense) vs KNN (Sparse)
• “Uniform” Latency (Dense) vs “Variable” Latency (Sparse)
• Mono-cpu (Latency) vs Multi-cpu/gpu (QPS)
• Keep index small (IVF, PISA) vs Precompute and store everything (HNSW)

Comparison with dense models
How to?

12



© 2021 NAVER LABS. All rights reserved.

• Not exactly sure how to do it fairly
• Different software makes for different benchmark

• Comparing PISA/Anserini/JASS vs NMSlib/FAISS ?
• Example: How to be sure that all of them are warmed up correctly/fairly?

• Different optimizations
• Approximate KNN (Dense) vs KNN (Sparse)
• “Uniform” Latency (Dense) vs “Variable” Latency (Sparse)
• Mono-cpu (Latency) vs Multi-cpu/gpu (QPS)
• Keep index small (IVF, PISA) vs Precompute and store everything (HNSW)

13

Comparison with dense models
How to?

OPEN QUESTION
Take results with a grain of salt



© 2021 NAVER LABS. All rights reserved. 14

Comparison with dense models
Latency

OPEN QUESTION
Take results with a grain of salt



© 2021 NAVER LABS. All rights reserved. 15

Comparison with dense models
QPS

OPEN QUESTION
Take results with a grain of salt



Conclusion

SPLADE can be efficient and VI) BT-Medium is the first method to concurrently:

● Only 2x the cost of BM25 (or 4 times of BM25 without stop words)

● Comparable to ColBERTv2 on MSMARCO (<10% loss of MRR@10)

● Comparable to SPLADEv2 on BEIR (<5% loss of NDCG@10)

16

Code: https://github.com/naver/splade
Indexes: https://github.com/naver/splade/tree/main/efficient_splade_pisa
HuggingFace weights: https://huggingface.co/naver

https://github.com/naver/splade
https://github.com/naver/splade/tree/main/efficient_splade_pisa
https://huggingface.co/naver


Improving other sparse methods

• Kinda unfair comparison with them as well
• Distillation and hyperparameter search can easily be added to 

both
• Better PLM initialization as well

• MLM+Flops? Contriever? CoCondenser?
• Removing stop words from queries could also be important
• Is there a way to benchmark all this?

17


