An Efficiency Study for SPLADE models

Carlos LASSANCE, Stéphane CLINCHANT

© NAVER LABS Corp

Introduction

- Goal: Study the efficiency of SPLADE models for sparse neural retrieval
 - In domain: MSMARCO passage dataset
 - Out-of-domain: 18 BEIR datasets

Introduction – SPLADE Recap

- Use the MLM output
 - Max pooling over each token output
 - Induce sparsity:
 - ReLU over the output
 - FLOPS [Paria et al 2020] regularization
 - Estimate number of activations in a batch
 - Proxy for total retrieval FLOPS

http://github.com/naver/splade

Motivation: Findings from Wacky Weights Mackenzie, Trotman and Lin, 2021

Findings:

- Recent sparse models are slower than BM25
- SPLADE 50x slower on mono-thread evaluation

		Quality	Time	Space		
Method		RR@10	Latency	Index Size		
			(ms)	(MB)		
Anserini (Lucene): DAAT						
(1a)	BM25	0.187	40.1	661		
(1b)	BM25-T5	0.277	62.8	1036		
(1c)	DeepImpact	0.325	244.1	1417		
(1d)	uniCOIL-T5	0.352	222.3	1313		
(1e)	uniCOIL-TILDE	0.350	194.6	2067		
(1f)	SPLADEv2	0.369	2140.0	4987		

RQ:

SPLADE quick as BM25?

First things first: Is SPLADE efficient?

Yes and No

- No: It does not optimize for the same things as sparse retrieval
 - Released models are tuned for effectiveness, not efficiency
 - Optimized for multi-thread retrieval of each query
 - Measures FLOPS, not latency
- Yes: SPLADE is a family of models
 - Control efficiency-effectiveness trade-off
 - Can optimize for cpu mono-thread query retrieval:
 - Focus more on query size than document size

Finding efficient SPLADE configurations

- I) Explore SPLADE family to find better configuration
 - Small, Medium and Large versions
- II) Use latest available data (better distillation)

Our contribution

- Can we go further than those adjustments?
 - III) Separating encoders
 - Traditional SPLADE makes no difference between query and document
 - Hard for the model to learn that sparsities may be different
 - IV) Using L1 regularization instead of FLOPS on queries
 - FLOPS is optimized for generating balanced indexes
 - Queries need to be small, but don't need to be balanced
 - V) Unsupervised FLOPS+MLM training
 - Improves the state of the network before pretraining
 - Network already knows output should be sparse

Results: Improvements add up

VI) Reducing query encoder latency

- VI-BT) Using a smaller query encoder (BERT-Tiny)
 - Reduces the query encoder latency to almost 0 (43 ms -> 0.7ms)
- VI-SD) SPLADE doc
 - No encoding
 - *: without stop words

Comparison with SoTA sparse on in-domain data (MSMARCO)

Comparison on OOD (BEIR)

Method	Latency	MSMARCO	TREC19	BEIR	BEIR*				
Baselines									
BM25 [†]	4	19.7	50.6	43.0	-				
DocT5 [36]	11	27.6	64.2	44.1	-				
SPLADEv2-distil [10]	691	36.8	72.9	47.0 [§]	49.3				
Proposed models									
VI) BT-SPLADE-S	7	35.8	67.2	39.2	45.9				
VI) BT-SPLADE-M	13	37.6	69.4	42.1	47.1				
VI) BT-SPLADE-L	32	38.0	70.3	44.5	48.0				

BEIR* creates an ensemble with BM25 to non BM25-baselines Latency increases by 4 ms

Comparison with dense models *How to?*

- Not exactly sure how to do it fairly
 - Different software makes for different benchmark
 - Comparing PISA/Anserini/JASS vs NMSlib/FAISS ?
 - Example: How to be sure that all of them are warmed up correctly/fairly?
 - Different optimizations
 - Approximate KNN (Dense) vs KNN (Sparse)
 - "Uniform" Latency (Dense) vs "Variable" Latency (Sparse)
 - Mono-cpu (Latency) vs Multi-cpu/gpu (QPS)
 - Keep index small (IVF, PISA) vs Precompute and store everything (HNSW)

Comparison with dense models *How to?*

OPEN QUESTION Take results with a grain of salt

- Not exactly sure how to do it fairly
 - Different software makes for different benchmark
 - Comparing PISA/Anserini/JASS vs NMSlib/FAISS ?
 - Example: How to be sure that all of them are warmed up correctly/fairly?
 - Different optimizations
 - Approximate KNN (Dense) vs KNN (Sparse)
 - "Uniform" Latency (Dense) vs "Variable" Latency (Sparse)
 - Mono-cpu (Latency) vs Multi-cpu/gpu (QPS)
 - Keep index small (IVF, PISA) vs Precompute and store everything (HNSW)

Comparison with dense models *Latency*

OPEN QUESTION Take results with a grain of salt

Comparison with dense models *QPS*

OPEN QUESTION Take results with a grain of salt

Conclusion

SPLADE can be efficient and VI) BT-Medium is the first method to concurrently:

- Only 2x the cost of BM25 (or 4 times of BM25 without stop words)
- Comparable to ColBERTv2 on MSMARCO (<10% loss of MRR@10)
- Comparable to SPLADEv2 on BEIR (<5% loss of NDCG@10)

Code: <u>https://github.com/naver/splade</u>

Indexes: <u>https://github.com/naver/splade/tree/main/efficient_splade_pisa</u> HuggingFace weights: <u>https://huggingface.co/naver</u>

Improving other sparse methods

- Kinda unfair comparison with them as well
- Distillation and hyperparameter search can easily be added to both
- Better PLM initialization as well
 - MLM+Flops? Contriever? CoCondenser?
- Removing stop words from queries could also be important
- Is there a way to benchmark all this?