

Fast Passage Re-ranking with Contextualized Exact Term Matching and Efficient Passage Expansion

Shengyao Zhuang & Guido Zuccon

{s.zhuang,g.zuccon}@uq.edu.au ielab, The University of Queensland, Australia www.ielab.io

monoBERT is effective!

monoBERT's Challenges: (1) it's slow

monoBERT's Challenges: (1) it's slow, (2) it's expensive

BERT's Challenges: (1) it's slow, (2) it's expensive

monoBERT produces 165,000x more CO₂ emissions than BM25

Scells, Zhuang, Zuccon, "Reduce, Reuse, Recycle: Green Information Retrieval Research", **SIGIR 2022**

Why is monoBERT slow?

Computationally expensive layers

e.g. 110+ million learned weights

Why is monoBERT slow?

Why is monoBERT slow?

Computationally expensive layers

e.g. 110+ million learned weights

Possible Solutions:

- A. Multistage ranking pipeline with limited re-ranking
- B. Simplification of BERT inference to lower query latency

If wanting to reduce query latency, then no need to modify this

This influences query latency — can we make this faster?

TILDE: Term Independent Likelihood moDEI

- Use BERT tokeniser to obtain sparse query encoding
- Use CLS token to encode document
- Project CLS token embedding to |V| vector
- Inner product between sparse query vector and document vector, in the |V| space

Zhuang, Zuccon, "TILDE: Term Independent Likelihood moDEl for passage re-ranking", SIGIR 2021

TILDE

- TILDE provides a trade-off between effectiveness and efficiency
- Does not require GPU at query time
- Yet, losses in effectiveness w.r.t. monoBERT are significant
- Less effective than DRs
- 10x less latency than DRs ran on GPU, 100x less latency than DRs ran on CPU

Can we do any better w.r.t. efficiency & effectiveness?

Can we do any better w.r.t efficiency & effectiveness?

Can we do any better w.r.t efficiency & effectiveness?

Large vector to store.
Additional projection, no direct relation to vocabulary.
REFINE THIS!

TILDEV2

TILDEV2

ie lab

- TILDEv2 achieved a great trade-off
- Can be run in production, on commodity hardware: it does not even require a GPU
- More effective & efficient than DRs
- Effectiveness at par to other sparse models (uniCOIL, SPLADE)

Importance of Expansion in TILDEv2

	No Exp
MRR@10	0.299
Avg added tokens	
Index size	4.3 GB

Importance of Expansion in TILDEv2

	No Exp	Doc2query
MRR@10	0.299	0.333
Avg added tokens	_	19.0
Index size	4.3 GB	5.2 GB

Importance of Expansion in TILDEv2

	No Exp	Doc2query	TILDE m=128	TILDE m=150	TILDE m=200
MRR@10	0.299	0.333	0.326	0.327	0.330
Avg added tokens		19.0	13.0	25.2	61.6
Index size	4.3 GB	5.2 GB	5.2 GB	5.6 GB	6.9GB

However, expansion comes at a cost

	No Exp	Doc2query	TILDE m=128	TILDE m=150	TILDE m=200
MRR@10	0.299	0.333	0.326	0.327	0.330
Avg added tokens	_	19.0	13.0	25.2	61.6
Index size	4.3 GB	5.2 GB	5.2 GB	5.6 GB	6.9GB
Expansion cost	_	320 hours, \$768	7.22 hours, \$5.34	7.25 hours, \$5.37	7.33 hours, \$5.42

TILDEv2 Cost-Quality Trade-off

Trade-off between effectiveness, efficiency and hardware

Robustness to out-of-distribution data

PRF integration, efficient PRF

Neural IR @ ielab

Questions?

https://ielab.io/guido

https://ielab.io/projects/ transformers4ir.html

Data & Training efficiency

Hybrid sparse-dense methods

BERT models in domain-specific tasks

Additional Material: Fast Passage Reranking with Contextualized Exact Term Matching and Efficient Passage Expansion

Shengyao Zhuang & Guido Zuccon

{s.zhuang,g.zuccon}@uq.edu.au ielab, The University of Queensland, Australia www.ielab.io

Can we do any better w.r.t efficiency & effectiveness?

Large vector projection, no direct relation to vocabulary.

computation: increase of complexity affect latency. **REFINE THIS!**

TILDEv2: extending TILDE with Contextualized Exact Term Matching and Passage Expansion

- Use BERT tokeniser to obtain sparse query encoding
- Use BERT token embeddings for exact term match
- Expand the document representation with doc2query or TILDE: improves the document representations, overcomes query-document vocabulary mismatch

TILDE &TILDEv2 effectiveness

Method	MS MARCO Dev (MMR@10)	Latency GPU	Latency CPU
BM25 + monoBERT large	0.365	11,594	_
BM25 + monoBERT base	0.347	3,815	_
DPR	0.311		
RepBERT	0.304	152	1,633
ANCE	0.330	152	1,633
CLEAR	0.328		
EPIC	0.273	96	113
BM25+TILDE	0.269	_	76
doc2query+TILDE	0.285	_	75
BM25+TILDEv2	0.333	_	80
doc2query+TILDEv2	0.341	_	76

Loss Function for TILDE

- Query tokens are assumed independent
- follow query/document likelihood ranking paradigm

$$\mathscr{L}_{QL}(D) = -\sum_{(q,d) \in D} \frac{1}{|V|} \sum_{i}^{|V|} y \log(P_{\theta}(t_i | d)) + (1-y) \log(1 - P_{\theta}(t_i | d)), \qquad \text{Exploit the landary of the landary of the property of the propert$$

Exploit the language model from observed documents

$$\mathcal{L}_{DL}(D) = -\sum_{(q,d) \in D} \frac{1}{|V|} \sum_{i}^{|V|} y \log(P_{\theta}(t_i | q)) + (1 - y) \log(1 - P_{\theta}(t_i | q)),$$

Exploit the language model from observed queries

$$\mathcal{L}_{BiQDL}(D) = \frac{\mathcal{L}_{QL}(D) + \mathcal{L}_{DL}(D)}{2}$$

Bi-directional querydocument likelihood loss (BiQDL)

$$y = \begin{cases} 1, & \text{if } t_i \text{ in } q, \\ 0, & \text{otherwise} \end{cases}$$

3 ways of ranking with TILDE

 TILDE can rank passages based on query likelihood only (TILDE-QL):

TILDE-QL
$$(q|d^k) = \sum_{i}^{|q|} \log(P_{\theta}(q_i|d^k))$$

 TILDE can rank passages based on document likelihood only (TILDE-DL):

TILDE-DL
$$(d^k|q) = \frac{1}{|d^k|} \sum_{i}^{|d^k|} \log(P_{\theta}(d_i^k|q))$$

 TILDE can rank passages based on query and document likelihood (TILDE-QDL):

TILDE-QDL
$$(q, d^k) =$$

$$\alpha \cdot \text{TILDE-QL}(q|d^k) + (1-\alpha) \cdot \text{TILDE-DL}(d^k|q)$$

Impact of document likelihood

TILDE-QDL $(q, d^k) = \alpha \cdot \text{TILDE-QL}(q|d^k) + (1 - \alpha) \cdot \text{TILDE-DL}(d^k|q)$

Using monoBERT for ranking

Using monoBERT for ranking

