
Fast Passage Re-ranking with Contextualized Exact Term
Matching and Efficient Passage Expansion
Shengyao Zhuang

The University of Queensland
Brisbane, QLD, Australia
s.zhuang@uq.edu.au

Guido Zuccon
The University of Queensland

Brisbane, QLD, Australia
g.zuccon@uq.edu.au

ABSTRACT
BERT-based information retrieval models are expensive, in both
time (query latency) and computational resources (energy, hard-
ware cost), making many of these models impractical especially
under resource constraints. The reliance on a query encoder that
only performs tokenization and on the pre-processing of passage
representations at indexing, has allowed the recently proposed
TILDE method to overcome the high query latency issue typical
of BERT-based models. This however is at the expense of a lower
effectiveness compared to other BERT-based re-rankers and dense
retrievers. In addition, the original TILDE method is characterised
by indexes with a very high memory footprint, as it expands each
passage into the size of the BERT vocabulary.

In this paper, we propose TILDEv2, a new model that stems from
the original TILDE but that addresses its limitations. TILDEv2 relies
on contextualized exact term matching with expanded passages.
This requires to only store in the index the score of tokens that
appear in the expanded passages (rather than all the vocabulary),
thus producing indexes that are 99% smaller than those of TILDE.
This matching mechanism also improves ranking effectiveness by
24%, without adding to the query latency. This makes TILDEv2
the state-of-the-art passage re-ranking method for CPU-only envi-
ronments, capable of maintaining query latency below 100ms on
commodity hardware.

One potential drawback of TILDEv2, compared to the original
TILDE, is the extra passage expansion process required at indexing.
This is an expensive process if performed using current passage
expansion methods. However, we address this by adapting the
original TILDE model to serve as a passage expansion method.
Compared to current expansion methods, our proposed method
reduces the passage expansion time by 98% with only less than 1%
effectiveness loss on the MS MARCO passage ranking dataset (and
even improvements on other datasets). We further show that our
expansion approach generalises to other ranking methods that rely
on expansion.

CCS CONCEPTS
• Information systems→ Retrieval models and ranking; In-
formation retrieval query processing.

KEYWORDS
Tokenizer-based query encoder, Contextualized exact term match-
ing, Passage expansion

1 INTRODUCTION
Passage ranking is a core task for many web search and information
retrieval applications. Traditional passage retrieval methods, such
as BM25, rely on exact lexical matching signals and use frequency-
based term importance estimation to calculate the matching score
between queries and passages. This bag-of-words (BOW) mecha-
nism however limits the capability of these methods of retrieving
passages that are semantically relevant but have low or zero query
term frequency: the well-known vocabulary mismatch problem [8].

Neural retrieval methods aim to address this limitation. Recent
advances in neural rankers have seen the introduction of pre-trained
deep language models (LMs) that are then fine-tuned on passage
ranking tasks. These methods leverage the contextualized represen-
tation produced by deep LMs [31], such as BERT [6], to estimate
the semantic matching score between passages and queries. For
example, monoBERT [27] takes query-passage pairs as the input of
BERT and the matching scores are estimated on the contextualized
CLS token representation. Many empirical results obtained with
monoBERT and its variants [5, 10, 28, 30] have demonstrated that
these deep LMs based rankers achieve substantially better effective-
ness than BOW methods on passage ranking tasks. However, this
effectiveness gain does not come for free. The query latency cost
of this type of neural rankers is several orders of magnitude larger
than that of BOW methods [30]. In addition, GPUs are required, in
place of more economical CPUs, not only for the offline training of
the rankers, but also for the online (i.e. at query time) encoding of
the contextualized representations. This hinders the practical adop-
tion of these powerful rankers on small, GPU-free devices, such
as mobile phones or embedded systems, or limits the number of
passages that can be considered for re-ranking within a reasonable
amount of time to guarantee real-time responses [13, 46].

To address the high query latency issue of these BERT-based
re-rankers and to allow for the use of CPU-based systems in place
of GPU-based ones, the recently proposed TILDE method [46] pro-
poses to only use the BERT tokenizer to encode query representa-
tions at query time (online), while use BERT to pre-compute con-
textualized token importance scores over the BERT vocabulary for
each passage in the index at indexing time (offline). Since no BERT
inference is required at query time, TILDE achieves impressive
re-ranking speed and GPUs are not required for inference. How-
ever, despite being very efficient, TILDE is much less effective than
state-of-the-art BERT-based re-rankers and dense retrievers: TILDE
trades off query representation quality, and thus effectiveness, for
querying efficiency. On the other hand, because TILDE expands all
passages in the collection to the size of the BERT vocabulary, it also
has the drawback of a large index (and thus associated memory

Shengyao Zhuang and Guido Zuccon

requirements): each passage, in fact, has a posting for every term
in the BERT vocabulary.

In this paper, we propose changes to the TILDE method that
tackle the current drawbacks of TILDE, while maintaining its ef-
ficiency. The result is a method, referred to as TILDEv2, that is
highly efficient in both query latency (maintaining TILDE’s origi-
nal low latency) and index size (reducing the original TILDE index
by up to 99%), and showcases effectiveness at par to state-of-the-art
BERT-based methods (improving over TILDE by up to 24% on MS
MARCO). This makes TILDEv2 to be production-ready for applica-
tions with limited computational power (e.g. no GPUs, start-ups).
Specifically, we modify TILDE in the following aspects:

• Exact TermMatching.The query likelihoodmatching orig-
inally employed in TILDE, expands passages into the BERT
vocabulary size, resulting in large indexes. To overcome this
issue, we follow the recent paradigm of estimating relevance
scores with contextualized exact term matching [9, 19, 25].
This allows the model to index tokens only present in the
passage, thus reducing the index size. In addition to this, we
replace the query likelihood loss function, with the Noise-
contrastive estimation (NCE) loss [12] that allows to better
leverage negative training samples. This loss function has
been shown effective for recent dense retrievers [9, 15, 21, 33]
and BERT-based re-rankers [10].

• Passage Expansion.To overcome the vocabularymismatch
problem that affects exact term matching methods, we use
passage expansion to expand the original passage collection.
Passages in the collection are expanded using deep LMs with
a limited number of tokens. This requires TILDEv2 to only
index a few extra tokens in addition to those in the original
passages.

Compared to the original TILDE, the only drawback introduced
by TILDEv2 is an extra passage expansion process to be executed at
indexing time. This passage expansion process is typical of methods
that exploit contextualized exact term matching [9, 19, 25]. For pas-
sage expansion, these previous methods rely on docT5query [29] to
generate related tokens that are appended to the original passage.
However, docT5query is a T5-based [34] sequence-to-sequence gen-
erative model, which is very expansive for inference: it requires
320 hours on a preemptible TPU1 to expand the whole MS MARCO
passage collection. This process becomes then expansive, and of-
ten infeasible, for large-scale information retrieval applications
such as web search, or for small organisations such as start-ups. In
TILDEv2 instead, we introduce a new way of performing this pas-
sage expansion process by replacing docT5query with the original
TILDE model (which is then used for passage expansion, but not
for retrieval). Empirical evaluation demonstrates that the proposed
passage expansion method requires only a fraction of the time of
the previous expansion method (45 times faster than docT5query),
with only less than 1% effectiveness loss, if any. In addition, we also
show that our passage expansion method is generally applicable to
other retrieval methods such as uniCOIL [19].

1Estimated based on generating 40 “expansion queries” per passage.

2 RELATEDWORK
Transformer-based [38] pre-trained deep LMs, such as BERT [6],
have been shown to provide rich contextualized information, deliv-
ering high effectiveness in many NLP [1, 35, 43] and downstream
retrieval and ranking tasks [20]. Nogueira and Cho were the first to
directly fine-tuned BERT for passage ranking, achieving a large per-
formance leap over BOW methods [27]. Gao et al. further showed
that BERT trained with localized NCE loss achieves better effec-
tiveness for document re-ranking [10]. Beyond BERT, other gen-
erative pre-trained LMs such as GPT [1], BART [18] and T5 [35]
also have shown promising results in text re-ranking with query
likelihood [7, 17, 45].

The biggest shortage of BERT-based rankers is their high query
latency: several expensive BERT inferences are needed for ranking
passages from a candidate pool because at query time BERT requires
as input individual query-passage pairs. This makes BERT-based
rankers feasible only for re-ranking, and with small rank cut-offs.

Several works have attempted to address the high query latency
of BERT-based re-rankers. One direction is modifying the BERT
encoder. Hofstätter et al. [13] proposed the Transformer Kernel (TK):
Instead of using the full-size BERT, TK uses a limited number of
transformer layers to pre-compute contextual representations of the
passages’ tokens, requiring only a small amount of computation to
produce the query representation at query time. The encoded query
tokens and document tokens are then used to compute a feature
matrix with a kernel operation. MacAvaney et al. [24] proposed
EPIC, where query and passages are encoded independently: this
allows to pre-compute the passage representation at indexing time.
The original TILDE method [46], which we build on top of in this
paper, takes this idea to the extreme: TILDE only uses the BERT
tokenizer to encode the query representation at query time. Since
no transformer layer is involved at query time, TILDE can be ran
efficiently on a CPU-only environment. A drawback of both TILDE
and EPIC is the large amount of memory required to store the
passage representations (index).

An alternative direction is reconsidering the representation.
This is the approach followed by BERT-based dense retrievers
(DRs) [11, 15, 16, 33, 41, 44]. Similar to EPIC, DRs also compute
passage representations at indexing time, rather than at querying,
requiring then at query time only one BERT inference for encod-
ing the query. Passages are ranked using the similarity between
the query representation and the passage representations: when
powerful GPUs are used, DRs can achieve similar query latency as
traditional BOW methods based on inverted index (e.g., BM25).

A third direction is represented by methods based on the super-
vised construction of an inverted index and the use of contextual-
ized exact term matching. DeepCT [4], for example, uses BERT to
estimate the contextualized term importance weight for terms in
a passage. Then, the learnt term weights are stored in a standard
inverted index. Hence, retrieval can be performed using any BOW
exact termmatchingmethod, such as BM25. DeepCT’s effectiveness,
however, is limited by the exact term matching mechanism as it can
only estimate weights for terms that appear in the passage. This
drawback is solved in the recently proposed DeepImpact [25]: Deep-
Impact first uses docT5query [29] to generate terms to expand the
original passage. Contextualized term weights are then assigned to

Fast Passage Re-ranking with Contextualized Exact Term Matching and Efficient Passage Expansion

Figure 1: Model architectures. Left: the original TILDE model. Right: Our TILDEv2 model.

these new terms, and matching can be executed. COIL [9] uses a dif-
ferent contextualized exact term matching architecture. Instead of
storing scalar term weights, COIL learns and stores contextualized
token representations into the inverted lists, which are then used to
perform exact term matching at query time. A subsequent work by
Lin and Ma introduced a variation of COIL, named uniCOIL [19],
which combines the idea of passage expansion from DeepImpact
with the COIL architecture, so as to learn scalar weights that can
be stored in the standard inverted index. Our proposed TILDEv2
builds upon this prior work by introducing contextualized exact
term matching coupled with passage expansion into TILDE for the
passage re-ranking task.

3 METHOD
The proposed TILDEv2 addresses the limitations of the current
TILDE model by integrating and expanding upon a number of
recent advances in BERT-based rankers. Next, we discuss the key
components of our TILDEv2 and its similarities and differences
compared to the original TILDE.

3.1 Tokenizer-based query encoder
Unlike other BERT-based re-rankers and DRs, at query time TILDE
only uses the BERT tokenizer to encode the query into a sparse
vector representation: this represents one of themain innovations of
TILDE. This tokenizer-based query encoder is very simple but also
very efficient: it is a lookup table without any model parameters,
thus eliminating the need for costly inferences that require GPU
computation. In our experiments, it takes only less than 1 ms to
encode the query with TILDE.

In order to achieve maximum re-ranking speed, our TILDEv2
inherits the simple query encoder which is at the basis of TILDE.
As Figure 1 illustrates, both TILDE and TILDEv2 use the BERT
tokenizer to encode the query. The encoded query representation is
a sparse vector of dimension equal to the BERT vocabulary size, in
which each element in the vector is the frequency of that token in
the query. For instance, for the query ‘apple account’ (Figure 1), the
token ‘apple’ appears once in the query and its token id in the BERT
vocabulary is 6207; hence, the value of the 6207th element in the
query vector is 1. These non-zero elements are used to compute the

matching score between the query and a passage (see next). Since
queries in web search are often short [36], the vectors are sparse
(only few elements are non-zero), and the matching operation only
requires to consider the non-zero elements, being thus very efficient.

3.2 Re-ranking with contextualized exact term
matching

The biggest difference between TILDE and TILDEv2 is the query-
passage relevance matching mechanism. TILDE follows the query
likelihood paradigm [32], where the probability of a passage being
relevant to a query is estimated by the likelihood of generating the
query text given the passage text. As Figure 1(a) illustrates, TILDE
outputs the query token probabilities over the BERT vocabulary
(presented as a vocabulary size dense vector) using a projection
layer on top of the BERT’s [CLS] token. Then, it assumes the query
tokens are independent and it computes the query likelihood by
summing the log probabilities of the query tokens in the dense
vector. This relevance matching mechanism forces TILDE to com-
pute and store query token likelihoods for all tokens in the BERT
vocabulary at indexing time, resulting in a very large index. As an
example, the TILDE index size for the MS MARCO passage collec-
tion is more than 500 GiB, compared to the standard Lucene index
which is only 2.8GiB: TILDE index size is then often not practical,
especially for the systems it targets (those with low computational
power, i.e. no GPUs, like mobiles and embedded systems, which
are often also characterised by limited disk space).

To overcome this issue, TILDEv2 abandons the use of the query
likelihood matching mechanism. Inspired by recent advances in
contextualized term weighting, instead, in TILDEv2 we use BERT to
output a scalar importance weight for all tokens in the passage and
perform exact term matching between query and passage tokens.
Figure 1(b) illustrates the matching mechanism used in TILDEv2.

Specifically, we use BERT to output the contextualized token
embeddings for all passage tokens, and then we feed them into a
projection layer to downsize the embeddings to dimension 1:

v
p
i = ReLU

(
𝑊 1×n

proj𝐵𝐸𝑅𝑇 (pi) + b
)

(1)

wherepi is the i-th token in the passage and𝑊 1×n
proj is the projection

matrix that maps the BERT’s n dimensional word embedding of

Shengyao Zhuang and Guido Zuccon

Algorithm 1 Passage expansion with the original TILDE model.
1: Input:T ILDE, stopword list stop_list , passage p, Thresholdm
2: T = T ILDE(p) // get token likelihood distribution T .
3: sort(T) // sort by descending order of the likelihoods.
4: for t ∈ T [:m] do
5: if t < p AND t < stop_list then
6: p.append(t)
7: end if
8: end for

pi into a scalar; b is the learnable bias parameter of the projection
layer. The scalar output by the projection layer is then passed to a
ReLU operation to obtain the final contextualized term importance
weight vpi for pi . The ReLU operation masks out all the negative
scalars to zero, thus forcing all term weights to be positive. This
operation has also been used in previous work [19, 25].

We now define the exact term matching scoring function for
computing the passage relevance scores given all the query tokens’
frequencies encoded by the BERT tokenizer:

S(q,p) =
∑
qi ∈q

max
qi=pj

(
c(qi) ×v

p
j

)
(2)

where c(qi) is the count of the i-th unique query token given by
the BERT tokenizer query encoder described in section 3.1. The
relevance score of each query-passage pair is the sum of the contex-
tualized term weights provided by each query token that appears
in the passage. If a query token appears more than once in a pas-
sage, then its score is equal to the highest contextualized term
weight (max(.)) for that token in the passage. With this matching
mechanism, TILDEv2 only needs to pre-compute and store the to-
kens that appear in the passage along with the max contextualized
term weight. Compared to TILDE, which needs to store the likeli-
hood value of all tokens in the BERT vocabulary, the index size of
TILDEv2 is therefore two orders of magnitude smaller (we provide
more details on this aspect in section 5.4).

Finally, following previous work [9, 10, 15, 21, 33], we train our
TILDEv2 with the NCE loss function [12] with the negative passage
set l created by randomly sampling passages from the top 1,000
results obtained by BM25 for the query:

L = − log
exp(S(q,p+))

exp(S(q,p+)) +
∑
p−∈l exp(S(q,p−))

(3)

More training details are discussed in section 4.3

3.3 Passage expansion
Similar to traditional BOW methods, TILDEv2 can only match
those query terms that appear in the passage; thus, if no other
matching mechanism is put in place, its effectiveness is limited by
the vocabulary mismatch problem. In order to reduce the impact
of this problem, following recent advances in exact term matching
models [19, 25], we use the technique of passage expansion to
expand each passage in the collection at indexing time. Passage
expansion appends semantically related and potentially relevant
terms at the end of a passage, in the bid to increase the likelihood
of retrieving the passage for queries containing those expanded
terms and for which the passage is relevant.

Existing approaches use docT5query [29] to perform passage
expansion [19, 25]. docT5query is a T5-based [35] sequence-to-
sequence generative language model, which can only generate
one token at a time. Thus, multiple inferences from docT5query
are needed to obtain several tokens for passage expansion. Pro-
vided that T5 is a large transformer model, passage expansion with
docT5query requires a large amount of computational resources.
According to the statistic provided by the docT5query authors [29],
sampling 40 queries2 per passage for each of the ≈8.8 million pas-
sages in the MS MARCO collection requires ≈320 hours on a single
TPU, and ≈5,000 hours are required for expanding the MS MARCO
v2’s 138.3 million passages3. For large-scale information retrieval
applications such as web search, this is a very expensive process.

For TILDEv2 we take a different approach to passage expansion:
we adapt the original TILDE method to perform the passage ex-
pansion. This idea is based on the observation that TILDE actually
outputs a query token likelihood distribution over the vocabulary.
This distribution can be considered as an estimation of term impor-
tance given the passage context. In addition, unlike docT5query,
the original TILDE model assumes query terms are independent,
so that it only needs a single inference step to get the distribution
output for all tokens.

The main algorithm that exploits the original TILDE model for
passage expansion is described in Algorithm 1. For a given passage
p, we use TILDE to get the likelihood distribution T . Note, each
element inT is a token-likelihood pair. We then sort all the tokens in
T in descending order according to their corresponding likelihoods.
Next, for each top-m token t in the sorted list T , if t is not in the
original passage p and it is not in a pre-defined stopword list, we
then append it to the original passage. We do this expansion for all
passages in the collection. In our experiments, passage expansion
with TILDE can expand the whole MSMARCO passage collection in
7.3 hours on a single GPU. More details are provided in section 5.4.
Note, the use of TILDE for passage expansion was not present in
the original work of Zhuang and Zuccon [46], and thus is a novel
contribution of our work.

4 EXPERIMENTAL SETTINGS
Next, we describe the experiment settings we use to investigate
the performance of our TILDEv2, to compare it to current, relevant
methods in the literature, and to answer the research questions:

• RQ1: Which matching mechanism is more effective and
more efficient: the query likelihood matching used in the
original TILDE, or the contextualized exact term matching
used in TILDEv2?

• RQ2: How does TILDEv2 compare to current methods for
passage ranking in terms of effectiveness and efficiency?

• RQ3: How does the effectiveness-efficiency trade-off of TILDEv2,
allowed by the setting of the rank cut-off parameter, compare
to that of the BERT re-ranker?

• RQ4: How effective and how efficient is our passage expan-
sion based on TILDE, compared to the current state-of-the-
art method (docT5query)?

2This is the common number used in previous work.
3https://microsoft.github.io/msmarco/TREC-Deep-Learning.html

Fast Passage Re-ranking with Contextualized Exact Term Matching and Efficient Passage Expansion

4.1 Datasets and evaluation metrics
We experiment with three commonly used publicly available large-
scale passage ranking datasets: MSMARCO [26], TREC Deep Learn-
ing 2019 [3] and TREC Deep Learning 2020 [2] (DL2019, DL2020).
These datasets share the same set of passages, the MS MARCO pas-
sage corpus4, which consists of approximately 8.8 million passages
(average length: 73.1 terms) crawled by the Bing search engine, but
differ in terms of queries (and relevance assessments).

TheMSMARCOdataset provides approximately 1million queries.
Queries are split into train, dev, and eval sets. Each query is associ-
ated with shallowly annotated judgments, where on average only
one passage is marked as relevant and no irrelevant passages are
identified. Following standard practice from the dataset instruc-
tions, we use queries along with their relevance judgments in the
train set to train our model; while we evaluate the model on the dev
set. Evaluation is performed with respect to the official evaluation
measure MRR@10.

Unlike MS MARCO, the TREC DL2019 and DL2020 datasets
provide small query sets (43 for DL 2019, 54 for DL2020), with deep
judgments on a four-point scale (i.e. graded). Following TREC DL
practice, we use nDCG@10 and MAP as evaluation measures, so
we can more easily compare our method to past and future work.

For all evaluation measures, differences between methods are
tested for statistical significance using a paired two-tailed t-test
with Bonferroni correction.

Alongwith effectiveness, we also report the query latency achieved
within a CPU environment and within a GPU environment. For
this, we randomly sampled 200 queries from the dev queries of MS
MARCO and issued them one by one to each model, and report
the average query latency measured. For the CPU environment, we
conducted experiments on a consumer-grade 3.2GHz 6-core Intel
Core i7 CPU with 64GB DDR4 memory (2018 Apple Mac Mini). For
the GPU environment, we used an NVIDIA Tesla V100 16G GPU.

4.2 Baselines
BOWretrievers:We consider the traditional BOWapproach BM25
and the commonly used strong BOW baseline docT5query [29].
docT5query uses BM25 for ranking, but it performs passage ex-
pansion using the T5 deep LM as a collection pre-processing step.
We also use these two methods as first stage retrievers, on top of
which we apply TILDEv2 (and other deep LM re-rankers). For both
methods, we use the Anserini [42] implementation with its default
parameter setting.

Contextualized exact match: These methods use deep LMs to
assign contextualized term weight and perform exact term match-
ing with an inverted index. We use the recent DeepImpact [25] and
uniCOIL [19] methods. At query time, Deepimpact uses the BERT
tokenizer to “clean” the query tokens. uniCOIL, instead, performs
a BERT inference to compute the contextualized term weights for
the query tokens. For uniCOIL, we use the GitHub code5 provided
by the authors to train the model and use Anserini to index the
collection. For DeepImpact, we directly use the Anserini implemen-
tation.

4https://github.com/microsoft/MSMARCO-Passage-Ranking
5https://github.com/luyug/COIL/tree/main/uniCOIL

Dense Retrievers: We also consider dense retrievers, and specif-
ically RepBERT [44] and ANCE [41], as means of very efficient
neural methods for retrieval. RepBERT uses BERT to encode the
query and the passages and is trained with BM25 hard negatives.
ANCE uses RoBERTa [22], a more robust version of BERT, as the
encoder. For both methods, we use the model checkpoints provided
by the authors and the FAISS [14] Python toolkit to build a dense
vector index.

BERT-based re-rankers: We consider two types of BERT-based
re-rankers. EPIC [24] is a fast re-ranker that uses BERT to pre-
encode passages and at query time it performs a single BERT infer-
ence to encode the query. The re-ranking is then performed using
similarity matching between the query and passage representations.
For EPIC, we use the implementation available in the OpenNIR
toolkit [23]. The BERT-base/BERT-large re-ranker [27] (also known
as monoBERT) are strong BERT-based re-ranker baselines. This
approach requires that both the query and the passage are jointly
provided at query time as inputs to BERT; the output is the match-
ing score. The BERT-large re-ranker differs from the BERT-base
from the (larger) number of parameters. We use the model check-
points made publicly available by Huggingface’s model hub [40]
and provided by the NBoost IR platform [37].

Tokenizer-based re-rankers: At query time, both the original
TILDE [46] and TILDEv2 only use the BERT tokenizer to encode
the query. The key difference between the two methods is their
matching mechanism. By comparing our TILDEv2 with the original
TILDE we can directly measure the impact of our additions in
TILDEv2 with respect to effectiveness, query latency and index size.
For the original TILDE model, we use the model checkpoint made
available by the authors on the Huggingface model hub.

4.3 TILDEv2 implementation and training
We implemented TILDEv2 using Pytorch and the Huggingface
transformers library [40].We used the bert-base-uncased, which has
110M parameters, as BERT model in TILDEv2. The contextualized
word embeddings output by BERT have a dimension of 768; they
are then projected to scalars (dimension of 1) by a projection layer.
As in the original TILDE, we filtered out the same set of stopwords
when encoding queries with the BERT tokenizer.

We trained TILDEv2 for 204,000 update steps with the AdamW
optimizer. The learning rate was set to 3e-6 with a linear warm-up
schedule. Following previous work [9, 10, 19] we used both in-batch
negatives and hard negatives for the NCE loss function; these were
sampled from the BM25 top 1,000 results. More specifically, for each
query we sampled 7 hard negatives from BM25 and one positive. We
set the batch size to 8, resulting in a total of 63 negatives per query (7
hard negatives + 56 in-batch negatives). The model was trained on
a single NVIDIA Tesla V100 16G GPU; training took approximately
10 hours. We used the Python built-in dictionary class (Hashtable)
to implement the index, which is used at re-ranking to search the
stored contextualized term weights for the tokens in the passages.

Shengyao Zhuang and Guido Zuccon

Table 1: Effectiveness and efficiency of TILDEv2 and baselines. Statistical significant differences (p < 0.05) in effectiveness
between TILDEv2 and the baselines is reported with subscripts. The average query latency is measured in milliseconds. The
latency of the re-ranking methods includes that of the first stage retrieval. The BOWmodels, TILDE and TILDEv2 do not run
on GPU; while executing the BERT-base/large re-rankers in a CPU environment is infeasible.

MS MARCO TREC DL2019 TREC DL2020 Latency (ms)

Method MRR@10 nDCG@10 MAP nDCG@10 MAP GPU CPU

(i) BOW retriever
a) BM25 0.187 0.506 0.377 0.480 0.286 n.a. 70
b) docT5query (d2q) 0.277 0.648 0.463 0.616 0.408 n.a. 75

(i) Contextualized exact match
c) DeepImpact 0.326 0.696 0.472 0.650 0.426 n.a. 235
d) uniCOIL 0.351 0.693 0.476 0.666 0.445 240 276

(ii) Dense Retrievers
e) RepBERT 0.304 0.610 0.331 0.662 0.370 152 1,633
f) ANCE 0.330 0.645 0.361 0.642 0.405 152 1,633

(iii) Bert-based Re-rankers
g) EPIC+BM25-top100 0.274 0.608 0.411 0.573 0.349 96 113
h) EPIC+d2q-top15 0.303 0.691 0.473 0.628 0.406 101 116
i) BERT-base+BM25-top1000 0.350 0.706 0.483 0.686 0.454 3, 815 n.a.
j) BERT-large+BM25-top1000 0.370 0.738 0.506 0.705 0.493 11, 594 n.a.

(iv) Tokenizer-based Re-rankers
k) TILDE+BM25-top1000 0.269 0.579 0.406 0.620 0.406 n.a. 76.6
l) TILDE+d2q-top10 0.285 0.650 0.467 0.624 0.417 n.a. 75.3
TILDEv2 (ours)+BM25-top1000 0.333abeдhjkl 0.676a 0.448ae 0.659aд 0.433aдj n.a. 80.8
TILDEv2 (ours)+d2q-top100 0.341abeдhjkl 0.703aдk 0.498abef дk 0.669aд 0.449aд n.a. 76.4

5 RESULTS
5.1 RQ1: Effectiveness and efficiency of

TILDEv2 vs. TILDE
Table 1 reports the results obtained with respect to effectiveness
(MRR@10, nDCG@10, MAP) and efficiency (query latency) across
the three studied datasets. For the baseline re-rankers, we use the
best re-ranking cut-off reported in the respective original papers.
For TILDEv2, we tune the cut-off on a subset of dev queries from
MS MARCO, and use docT5query as the passage expansion method
for fair comparison with DeepImpact and uniCOIL, which also use
docT5query for passage expansion.

We first start by comparing the original TILDE and our TILDEv2
(block iv in Table 1), thus answering RQ1: which matching mech-
anism is more effective. Both methods in fact only use the BERT
tokenizer to encode the query, but rely on different matching mech-
anisms. The results indicate that the contextualized exact term
matching employed in TILDEv2 leads to higher effectiveness than
the reliance on query likelihood of the original TILDE; and this is re-
gardless of the first stage of retrieval (BM25 vs docT5query), though
docT5query leads to better results than BM25. These improvements
are especially significant for the MS MARCO dataset, with 24%
when re-ranking BM25 and 20% when re-ranking docT5query.

When considering query latency, we observe that both methods
only require less than 100 ms to generate the final ranking. In addi-
tion, TILDEv2 is only 4.2 ms slower than the original TILDE when

re-ranking BM25, and 1.1 ms slower when re-ranking docT5query.
We note that when tuning the rank cut-off on a random sample of
dev queries (see above), TILDEv2 was found to be most effective
when re-ranking the top 100 passages, while the original TILDE
used the top 10 passages: that is, although TILDEv2 re-ranking takes
a handful of milliseconds more than TILDE, it does re-rank more
passages. Furthermore, an additional reduction in runtime could
be achieved by optimizing the index structure used by TILDEv2.

In summary, in answer to RQ1, we conclude that the contextual-
ized exact term matching of TILDEv2 leads to better effectiveness
(significantly on MS MARCO) than the query likelihood matching
used by the original TILDE, at no or minor expense of query latency.

5.2 RQ2: Effectiveness and efficiency of
TILDEv2 vs. baselines

Wenow compare TILDEv2with other baselines in terms of effective-
ness (RQ2). For MS MARCO, TILDEv2 outperforms, significantly,
most comparison methods, although it is outperformed by uni-
COIL and the BERT-base/large re-rankers. Differences between
TILDEv2 and uniCOIL and BERT-base are not statistically signifi-
cant; while those with BERT-large are. Similar results are observed
for the two TREC DL datasets, with the difference that for these
datasets TILDEv2 displays better effectiveness than uniCOIL when
re-ranking docT5query (no statistical significance).

The biggest advantage of TILDEv2 is however the low query
latency. TILDEv2 does not require GPUs and only adds a couple of

Fast Passage Re-ranking with Contextualized Exact Term Matching and Efficient Passage Expansion

milliseconds on top of the first stage retrieval (BM25 or docT5query),
overall resulting in a query latency of ≤ 80 ms on CPU. The other
neural methods, instead, either require GPUs to achieve acceptable
query latency (and in any case higher than that of TILDEv2) or, if
they can feasibly be used on CPUs, display higher query latency.
Table 2 further details the breakdown of query latency for TILDEv2
and some strong baselines in the CPU environment. For uniCOIL,
ANCE and EPIC, even just the query processing amounts to about
50% of the total latency of TILDE and TILDEv2. For DRs (ANCE),
the retrieval time is much higher on CPU than GPU. The latency of
uniCOIL is acceptable on CPU; yet, it is more than 4 times higher
than that of the original TILDE and of TILDEv2. EPIC, TILDE and
TILDEv2 have comparable query latency, but EPIC and TILDE are
much less effective than TILDEv2 (as shown in Table 1).

In summary, in answer to RQ2, TILDEv2’s effectiveness is on
par with or better than the considered baselines, while achieving
much higher efficiency.

5.3 RQ3: Effectiveness-efficiency trade-off
In this section, we investigate the effectiveness-efficiency trade-off
of TILDEv2 (RQ3). This trade-off appears in many second-stage
re-ranking methods with respect to the rank cut-off used for the
re-ranking: higher cut-offs translate to more passages needing to
be evaluated, and thus higher query latency. For this analysis, we
compare our TILDEv2, which ran on a CPU environment, with the
BERT-large re-ranker, ran on a GPU environment, on the task of
re-ranking the top k results from BM25. The BERT-large re-ranker
is the strongest re-ranker baseline we considered.

In Figure 2 we report the analysis of this effectiveness-efficiency
trade-off in terms of nDCG@10 vs. query latency measured on
TREC DL 2019 (similar results on other datasets), exploring the cut-
offs k = {0, 10, 20, 50, 100, 200, 500, 1000} (k = 0: no re-ranking).

The BERT-large re-ranker (blue line) achieves higher effective-
ness when considering deeper cut-offs, as reported before by oth-
ers [20, 39]. This is problematic because the BERT-large re-ranker
is very inefficient when evaluating a passage (requiring on average
12ms): thus the cut-off conditions which make the BERT-large re-
ranker highly effective are the same that make it largely inefficient
– it takes around 12,000 ms to re-rank the top 1,000 passages.

In contrast, TILDEv2 (green line) only needs a few milliseconds
to re-rank the top 1,000 passages, and re-ranking less than that leads
to negligible time-saving. What is more, in less than 80ms TILDEv2
can achieve the same effectiveness that the BERT-large re-ranker
achieves after spending more than 500 milliseconds (cut-off k=50).

Finally, we also consider a three-stage re-ranking system (orange
line), where the top 1,000 BM25 results are first re-ranked using
TILDEv2 and that ranking is further processed using the BERT-
large re-ranker on the top k passages. The use on the intermediate
re-ranking step with TILDEv2 adds very little to the overall latency:
just 10.8 ms. As shown in Figure 2, the use of the intermediate
TILDEv2 step allows the final BERT re-ranker to produce highly
effective results using smaller rank cut-offs (i.e. 10 ≤ k ≤ 50), thus
overall producing substantial savings in query latency compared to
when TILDEv2 is not added to the pipeline (blue line). For example,
to reach the same level of effectiveness reached by the BERT-large
re-ranker with k = 50 (latency 605 ms), the three-stage pipeline

Table 2: Detailed query latency in CPU environment, in mil-
liseconds. Eachmethod is set to use the parameters that best
optimise MRR@10 on MS MARCO. ANCE and uniCOIl do
not perform re-ranking.

Methods Query
process Retrieval Re-rank Total

uniCOIL 46 230 n.a. 276
ANCE 63 1,570 n.a. 1,633
EPIC+d2q-top15 40 75 1 116
TILDE+d2q-top10 0.1 75 0.2 75.3
TILDEv2+BM25-top1000 0.1 70 10.7 80.8
TILDEv2+d2q-top100 0.1 75 1.3 76.4

Figure 2: Query latency analysis vs. nDCG@10 on TREC
DL2019. Points from left to right are re-ranking cut-offs k =
0 (no re-rank), 10, 20, 50, 100, 200, 500 and 1,000.

with TILDEv2 only requires the BERT-large re-ranker to re-rank
the top 10 TILDEv2 results (latency 175 ms), with a saving of 430 ms.
Similarly, the effectiveness reached by the three-stage pipeline with
k = 50 is not statistically significantly different from that reached
by the BERT-large re-ranker alone with k = 200, 500, 1000.

In summary, in answer to RQ3, we find that the rank cut-off
k controls the efficiency vs. effectiveness trade-off for the BERT-
large re-ranker: low values of k result in lower latency and lower
effectiveness, while larger k values yield more effective results but
substantially higher latencies. The rank cut-off k , however, while
impacting TILDEv2’s effectiveness (higher values lead to higher ef-
fectiveness), barely has any effect on query latency. Furthermore, we
find that injecting TILDEv2 into the BERT-large re-ranker pipeline
allows to reach the best effectiveness produced by the BERT-large
re-ranker alone, for a fraction of the latency.

5.4 RQ4: Impact of passage expansion
In this section, we investigate the impact of different passage ex-
pansion methods (RQ4), and in particular the docT5query and the
proposed TILDE for passage expansion, with respect to the cost
of the passage expansion process (time and money), the quality of
expanded terms and the impact on index size. To study these as-
pects, we consider passage expansion in the context of our TILDEv2
when re-ranking the top 1,000 passages from BM25, and of uni-
COIL for full index retrieval [19]. Both methods require expanded
passages at training and ranking; the use of uniCOIL allows us to
verify the generalisability of the TILDE passage expansion method.

Shengyao Zhuang and Guido Zuccon

Table 3: Impact of different expansion methods. The index size estimation of TILDEv2 is included BM25 index size and con-
textualized term weight index size. The expansion cost is estimated base on Google cloud service.

no Expansion docT5query TILDE,m = 128 TILDE,m = 150 TILDE,m = 200
uniCOIL TILDEv2 uniCOIL TILDEv2 uniCOIL TILDEv2 uniCOIL TILDEv2 uniCOIL TILDEv2

MS MARCO, MRR@10 0.319 0.299 0.351 0.333 0.343 0.326 0.346 0.327 0.349 0.330
DL2019, nDCG@10 0.653 0.613 0.693 0.676 0.682 0.680 0.690 0.679 0.707 0.670
DL2019, MAP 0.418 0.417 0.476 0.448 0.464 0.457 0.470 0.452 0.474 0.447
Index size 4.3G 4.8G 6.0G 5.2G 5.6G 5.2G 6.7G 5.6G 9.81G 6.9G
Avg added token 0 19.0 13.0 25.2 61.6
Expansion cost 0 320 hours/768$ 7.22 hours/5.34$ 7.25 hours/5.37$ 7.33 hours/5.42$

Table 4: Tokens generated by docT5query and TILDE for the first passage in the MS MARCO dataset (pid=0).

Original passage docT5query TILDE, m=128 TILDE, m=200
the presence of communication amid
scientific minds was equally impor-
tant to the success of the manhattan
project as scientific intellect was. the
only cloud hanging over the impres-
sive achievement of the atomic re-
searchers and engineers is what their
success truly meant; hundreds of thou-
sands of innocent lives obliterated.

amongst scientists
why? about so a im-
portance purpose
how significant in
for believe who did

importance purpose
quiz scientists bomb
genius development
solving significance
successful intelli-
gence solve effect
objective research
accomplish brains
progress scientist

... future impact strategic develop necessary ni
role involved developing needed theory signifi-
cant technology achievements accomplished sci-
ence achieve intellectual new breakthrough help
keypower effects effort human work engineer
concept invention idea problem process ability
communicate developed would affect solved de-
cision use deal society reason effective franklin
problems great goals opportunity secret consid-
ered

The methods are tested with no expansion, docT5query expansion,
and TILDE expansion. For docT5query we generate 40 expansion
queries, as done in previous work; larger values are infeasible (very
long generation time). For TILDE, we generatem = 128, 150, 200
expansion terms. Recall that not all expansion terms are added to a
passage: only new expansion terms are added.

The results are reported in Table 3. Any form of expansion im-
proves over the not expanded results, showing that passage expan-
sion is crucial for both TILDEv2 and uniCOIL. The docT5query
method produces the most effective expansions for both methods
on MS MARCO, although differences between docT5query and
TILDEm = 200 are marginal (0.349 vs. 0.351 for uniCOIL, 0.330 vs.
0.333 for TILDEv2) and not statistically significant (p = 0.848 and
p = 0.663, respectively). TILDEm = 200 provides the most effec-
tive expansions for uniCOIL on TREC DL2019 (for nDCG@10), and
TILDEm = 128 provides the most effective expansions for TILDEv2.
For MAP on this dataset, docT5query provides the most effective
expansions for uniCOIL, while TILDEm = 128 provides the most
effective ones for TILDEv2. Overall, the effectiveness achieved by
the TILDE expansion method is on par with that of docT5query.

Next, we consider the size of the index produced by the methods
(for TILDEv2, this is the size of the inverted index for BM25 and the
term weight index, implemented using HashTable). When TILDE
m = 128 is used, the index size produced by uniCOIL is smaller than
when using docT5query, while the one produced by TILDEv2 is the
same as if docT5query was used for expansion. Whenm increases,
the index size increases for both uniCOIL and TILDEv2: this is
expected as an increase inm will make TILDE produce more tokens
that are added to the passages. This can be seen by observing the

average added token row in Table 3. However, two observations
can be made: (1) the index produced by TILDEv2 is always smaller
than that produced by uniCOIL, despite the same number of tokens
being added, and (2) the size of the TILDEv2 index is two orders of
magnitude smaller than the size of the original TILDE index (not
reported in the table), which is ≈500Gib [46].

We then consider the cost of executing the two passage expan-
sion processes on the whole MS MARCO passage collection. The
TILDE expansion process is two orders of magnitude faster to run
than the docT5query (320 hours vs. ≈7 hours). In addition, the
TILDE expansion process can be run on a preemptible GPU envi-
ronment, which is much cheaper than the preemptible TPU environ-
ment used by Nogueira et al. [29] to run the docT5query expansion6
(costs estimated based on the Google cloud service). Thus, using our
TILDE expansion method is not just faster than docT5query, but
also cheaper. These advantages become even more obvious when
considering expanding larger collections such as the MS MARCO
v2 (138.3 million passages): it would take docT5query ≈ 5,000 hours
and $12,000, while only requiring TILDE ≈114 hours and $85.

Table 4 reports the tokens added by different expansion methods
for an example passage. The expanded tokens from docT5query
contain symbols such as the question mark, and common stop-
words, e.g., ‘a’, ‘for’. On the other hand, TILDE removes stopwords
and symbols before appending to the passage. Interestingly, both
docT5query and TILDE add similar tokens such as ‘scientists’, ‘im-
portance’, and ‘purpose’. In general, the added tokens from both
methods are on-topic.

6Using GPUs would result in a larger runtime.

Fast Passage Re-ranking with Contextualized Exact Term Matching and Efficient Passage Expansion

In summary, in answer to RQ4, our TILDE passage expansion
method achieves similar effectiveness as the state-of-the-art docT5query,
but it requires far fewer computational resources.

6 CONCLUSION
We proposed the TILDEv2 model for passage re-ranking, which
builds on top of the recently proposed TILDE by integrating the
best-of-breed from recent advances in neural retrieval. We further
proposed a novel use of the original TILDE as an effective and effi-
cient passage expansion technique. Our TILDEv2 aims to solve some
of the drawbacks of the original TILDE model (effectiveness, large
indexes) by integrating the contextualized exact term matching
approach. While, our passage expansion technique aims to address
the scalability issues of current methods for passage expansion.

The empirical results show that TILDEv2 significantly improves
the effectiveness of the original TILDE and largely reduces its index
size, while maintaining its efficiency and without resorting to ex-
pensive computational environments (TILDEv2 runs on CPU). We
also find that the proposed TILDE-based passage expansion method
delivers computational cost savings of up to 98% compared to other
passage expansion methods, while experiencing effectiveness drops
of less than 1% (and improving effectiveness in certain settings).
The proposed passage expansion method can be used not just with
TILDEv2: we show its performance generalises to other methods
such as uniCOIL. These results make TILDEv2 a production-ready
method of great appeal in search settings that require low query
latency and have limited computation resources available. The code
that implements TILDEv2 and that can be used to reproduce the
results in this paper is available at https://github.com/anonymous.

REFERENCES
[1] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165 (2020).

[2] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, and Daniel Campos. 2021. Overview
of the TREC 2020 deep learning track. arXiv preprint arXiv:2102.07662 (2021).

[3] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, and Ellen M
Voorhees. 2020. Overview of the trec 2019 deep learning track. arXiv preprint
arXiv:2003.07820 (2020).

[4] Zhuyun Dai and Jamie Callan. 2019. Context-aware sentence/passage term
importance estimation for first stage retrieval. arXiv preprint arXiv:1910.10687
(2019).

[5] Zhuyun Dai and Jamie Callan. 2019. Deeper text understanding for IR with
contextual neural language modeling. In Proceedings of the 42nd International
ACM SIGIR Conference on Research and Development in Information Retrieval.
985–988.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
NAACL-HLT (1).

[7] Cicero dos Santos, Xiaofei Ma, Ramesh Nallapati, Zhiheng Huang, and Bing
Xiang. 2020. Beyond [CLS] through ranking by generation. In Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing (EMNLP).
1722–1727.

[8] George W. Furnas, Thomas K. Landauer, Louis M. Gomez, and Susan T. Dumais.
1987. The vocabulary problem in human-system communication. Commun. ACM
30, 11 (1987), 964–971.

[9] Luyu Gao, Zhuyun Dai, and Jamie Callan. 2021. COIL: Revisit Exact Lexical Match
in Information Retrieval with Contextualized Inverted List. In Proceedings of the
2021 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies. 3030–3042.

[10] Luyu Gao, Zhuyun Dai, and Jamie Callan. 2021. Rethink Training of BERT
Rerankers in Multi-Stage Retrieval Pipeline. In The 43rd European Conference On
Information Retrieval (ECIR).

[11] Luyu Gao, Zhuyun Dai, Tongfei Chen, Zhen Fan, Benjamin Van Durme, and Jamie
Callan. 2021. Complementing lexical retrieval with semantic residual embedding.

In The 43rd European Conference On Information Retrieval (ECIR).
[12] Michael Gutmann and Aapo Hyvärinen. 2010. Noise-contrastive estimation: A

new estimation principle for unnormalized statistical models. In Proceedings of
the thirteenth international conference on artificial intelligence and statistics. JMLR
Workshop and Conference Proceedings, 297–304.

[13] Sebastian Hofstätter, Markus Zlabinger, and Allan Hanbury. 2020. Interpretable
& Time-Budget-Constrained Contextualization for Re-Ranking. In ECAI 2020.
IOS Press, 513–520.

[14] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017. Billion-scale similarity
search with GPUs. arXiv preprint arXiv:1702.08734 (2017).

[15] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey
Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense Passage Retrieval for Open-
Domain Question Answering. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP). 6769–6781.

[16] Omar Khattab and Matei Zaharia. 2020. Colbert: Efficient and effective passage
search via contextualized late interaction over bert. In Proceedings of the 43rd
International ACM SIGIR conference on research and development in Information
Retrieval. 39–48.

[17] Oleg Lesota, Navid Rekabsaz, Daniel Cohen, Klaus Antonius Grasserbauer,
Carsten Eickhoff, and Markus Schedl. 2021. A Modern Perspective on Query
Likelihood with Deep Generative Retrieval Models. Proceedings of ACM ICTIR
(2021).

[18] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART:
Denoising Sequence-to-Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics. 7871–7880.

[19] Jimmy Lin and Xueguang Ma. 2021. A Few Brief Notes on DeepImpact, COIL, and
a Conceptual Framework for Information Retrieval Techniques. arXiv preprint
arXiv:2106.14807 (2021).

[20] Jimmy Lin, Rodrigo Nogueira, and Andrew Yates. 2020. Pretrained transformers
for text ranking: Bert and beyond. arXiv preprint arXiv:2010.06467 (2020).

[21] Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin. 2021. In-Batch Negatives
for Knowledge Distillation with Tightly-Coupled Teachers for Dense Retrieval.
In Proceedings of the 6th Workshop on Representation Learning for NLP.

[22] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[23] Sean MacAvaney. 2020. OpenNIR: A Complete Neural Ad-Hoc Ranking Pipeline.
In WSDM 2020.

[24] Sean MacAvaney, Franco Maria Nardini, Raffaele Perego, Nicola Tonellotto, Nazli
Goharian, and Ophir Frieder. 2020. Expansion via prediction of importance with
contextualization. In Proceedings of the 43rd International ACM SIGIR conference
on research and development in Information Retrieval. 1573–1576.

[25] Antonio Mallia, Omar Khattab, Torsten Suel, and Nicola Tonellotto. 2021. Learn-
ing Passage Impacts for Inverted Indexes. In Proceedings of the 44th International
ACM SIGIR Conference on Research and Development in Information Retrieval.
1723–1727.

[26] Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan
Majumder, and Li Deng. 2016. MS MARCO: A human generated machine reading
comprehension dataset. In CoCo@ NIPS.

[27] Rodrigo Nogueira and Kyunghyun Cho. 2019. Passage Re-ranking with BERT.
arXiv preprint arXiv:1901.04085 (2019).

[28] Rodrigo Nogueira, Zhiying Jiang, Ronak Pradeep, and Jimmy Lin. 2020. Document
Ranking with a Pretrained Sequence-to-Sequence Model. In Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing: Findings.
708–718.

[29] Rodrigo Nogueira, Jimmy Lin, and AI Epistemic. 2019. From doc2query to
docTTTTTquery. Online preprint (2019).

[30] Rodrigo Nogueira, Wei Yang, Kyunghyun Cho, and Jimmy Lin. 2019. Multi-stage
document ranking with bert. arXiv preprint arXiv:1910.14424 (2019).

[31] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word
representations. arXiv preprint arXiv:1802.05365 (2018).

[32] Jay M Ponte and W Bruce Croft. 1998. A language modeling approach to in-
formation retrieval. In Proceedings of the 21st annual international ACM SIGIR
conference on Research and development in information retrieval. 275–281.

[33] Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang Ren, Wayne Xin Zhao, Daxi-
ang Dong, Hua Wu, and Haifeng Wang. 2021. RocketQA: An optimized training
approach to dense passage retrieval for open-domain question answering. In
Proceedings of the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies. 5835–5847.

[34] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the Limits
of Transfer Learning with a Unified Text-to-Text Transformer. Journal of Machine
Learning Research 21, 140 (2020), 1–67. http://jmlr.org/papers/v21/20-074.html

https://github.com/anonymous
http://jmlr.org/papers/v21/20-074.html

Shengyao Zhuang and Guido Zuccon

[35] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2020. Exploring the Limits
of Transfer Learning with a Unified Text-to-Text Transformer. Journal of Machine
Learning Research 21 (2020), 1–67.

[36] Craig Silverstein, Hannes Marais, Monika Henzinger, and Michael Moricz. 1999.
Analysis of a very large web search engine query log. In Acm sigir forum, Vol. 33.
ACM New York, NY, USA, 6–12.

[37] Cole Thienes and Jack Pertschuk. 2019. NBoost: Neural Boosting Search Results.
https://github.com/koursaros-ai/nboost.

[38] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998–6008.

[39] Shuai Wang, Shengyao Zhuang, and Guido Zuccon. 2021. BERT-based Dense
Retrievers Require Interpolation with BM25 for Effective Passage Retrieval. Pro-
ceedings of ACM ICTIR (2021).

[40] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe
Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu,
Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,
and Alexander M. Rush. 2020. Transformers: State-of-the-Art Natural Language
Processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural

Language Processing: System Demonstrations.
[41] Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul N Bennett,

Junaid Ahmed, and Arnold Overwijk. 2020. Approximate Nearest Neighbor Neg-
ative Contrastive Learning for Dense Text Retrieval. In International Conference
on Learning Representations.

[42] Peilin Yang, Hui Fang, and Jimmy Lin. 2018. Anserini: Reproducible ranking
baselines using Lucene. Journal of Data and Information Quality (JDIQ) 10, 4
(2018), 1–20.

[43] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov,
and Quoc V Le. 2019. Xlnet: Generalized autoregressive pretraining for language
understanding. Advances in neural information processing systems 32 (2019).

[44] Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Min Zhang, and Shaoping Ma. 2020. Rep-
BERT: Contextualized text embeddings for first-stage retrieval. arXiv preprint
arXiv:2006.15498 (2020).

[45] Shengyao Zhuang, Hang Li, and Guido Zuccon. 2021. Deep Query Likelihood
Model for Information Retrieval. In The 43rd European Conference On Information
Retrieval (ECIR).

[46] Shengyao Zhuang and Guido Zuccon. 2021. TILDE: Term Independent Likelihood
MoDEl for Passage Re-Ranking. In Proceedings of the 44th International ACM
SIGIR Conference on Research and Development in Information Retrieval (SIGIR
’21). 1483–1492.

https://github.com/koursaros-ai/nboost

	Abstract
	1 Introduction
	2 Related work
	3 Method
	3.1 Tokenizer-based query encoder
	3.2 Re-ranking with contextualized exact term matching
	3.3 Passage expansion

	4 Experimental settings
	4.1 Datasets and evaluation metrics
	4.2 Baselines
	4.3 TILDEv2 implementation and training

	5 Results
	5.1 RQ1: Effectiveness and efficiency of TILDEv2 vs. TILDE
	5.2 RQ2: Effectiveness and efficiency of TILDEv2 vs. baselines
	5.3 RQ3: Effectiveness-efficiency trade-off
	5.4 RQ4: Impact of passage expansion

	6 Conclusion
	References

