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ABSTRACT
The Plackett-Luce (PL) model is popular in learning-to-rank (LTR)

because it provides a useful and intuitive probabilistic model for

sampling ranked lists. Counterfactual offline evaluation and op-

timization of ranking metrics are pivotal for using LTR methods

in production. When adopting the PL model as a ranking policy,

both tasks require the computation of expectations with respect to

the model. These are usually approximated via Monte-Carlo (MC)

sampling, since the combinatorial scaling in the number of items to

be ranked makes their analytical computation intractable. Despite

recent advances in improving the computational efficiency of the

sampling process via the Gumbel top-k trick [23], the MC estimates

can suffer from high variance. We develop a novel approach to

producing more sample-efficient estimators of expectations in the

PL model by combining the Gumbel top-k trick with quasi-Monte

Carlo (QMC) sampling, a well-established technique for variance

reduction. We illustrate our findings both theoretically and empiri-

cally using real-world recommendation data from Amazon Music

and the Yahoo learning-to-rank challenge.
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1 INTRODUCTION
In streaming media services with enormous catalogs, it is para-

mount to provide customers with personalized content, so that

they can readily access media they are most likely to engage with.

Often content is displayed in the form of widgets, ranked from top

to bottom in the home page, containing for instance songs from

the same music genre or artist. Many approaches to solve these

ranking problems are based on the Plackett-Luce model [28, 36],

a probabilistic model for ranked lists, that given relevance scores,

performs repeated sampling from a softmax distribution. Removing

drawn items at each turn, the model constructs a list where items

most likely to be sampled appear in top positions. As such it has

been widely used in economics and statistics [5, 16, 21, 24] as well

as in recommender systems and information retrieval [9, 13, 38].

Despite the intuitive way of sampling from the model, computing

expectations with respect to the PL distribution is a challenging

task. The computational burden comes from enumerating all pos-

sible combinations of list entries, and it leads to a complexity of

O(𝑘!) where 𝑘 is the size of the list. Expectations with respect to

the PL model are required, for example, when computing utilities

of rankings and their gradients [31, 38] or propensities, needed for

counterfactual offline policy evaluation [26].

Monte Carlo sampling allows to approximate resulting expec-

tation but suffers from high variance of the resulting estimator.

As a remedy to the mentioned problems we suggest the use of

quasi-Monte Carlo (QMC) [10], a well known variance reduction

technique. Approximating expectations with QMC can lead to mean

squared error rates of up to O(1/𝑁 2) compared with the Monte

Carlo (MC) rate of O(1/𝑁 ) where 𝑁 is the number of samples.

In what follows we will illustrate how the reduced variance that

comes from QMC sampling leads to better estimation of propensi-

ties as well as more precise utilities and gradients in ranking models

that are based on the PL model. We will combine our approach with

the Gumbel top-k trick [23, 31] to generate efficient, low variance

samples from the PL distribution. Our contributions consist in

• Introducing QMC to the field of learning-to-rank (LTR) and

highlighting its ease of use in a wide range of settings;

• Deriving theoretical guarantees that show trade-offs be-

tween query batch sizes and Monte Carlo sample sizes when

using QMC for LTR;

• Showing practical gains through experiments on the Yahoo

LTR data [11] and production logs from Amazon Music.

The rest of our work is structured as follows. In Section 2 we

discuss how our contribution relates to recent work, Section 3

provides required background and sets the stage for our suggested

approach in Section 4, Section 5 shows our experimental results

and finally Section 6 concludes.

2 RELATEDWORK
Plackett-Luce model and learning-to-rank. The PL model has seen

growing attention in the machine learning community over recent

years [12, 19]. Used inside ranking models, the PL model leads to

robust performance in industrial settings due to the probabilistic

nature of the model [6]. This is a quality that also leads to desirable

exploration properties due to the implicit quantification of uncer-

tainty [32, 33]. However, efficiently training the ranking objective

is a computationally difficult task [45], in particular because policy

gradients [44] can suffer from high variance, which consequently

has lead to improved gradient computation procedures [30, 31].



Quasi-Monte Carlo sampling for machine learning. Quasi-Monte

Carlo (QMC) is a variance reduction technique that has seen wide

adoption in finance [18] and found its way into the statistics [7,

25] and machine learning community [4, 8, 27, 43]. Its use can

improve training of gradient based optimization methods that rely

on sampling from a parametric distribution. To the best of our

knowledge, we are not aware of any usage for learning-to-rank

problems so far.

3 BACKGROUND
We recall here the building blocks for our suggested method.

3.1 Offline learning and evaluation using
propensities

In learning-to-rank a common objective is to find the best policy

𝜋★ that maximizes expected utility in a policy class 𝜋 ∈ Π

𝜋★ = argmax

𝜋 ∈Π
E𝑞∼𝑄 [𝑈 (𝜋 |𝑞)], (1)

where queries 𝑞 (list of items to rank) are sampled from a query

distribution 𝑄 . The utility of a policy given a query is defined as

𝑈 (𝜋 |𝑞) = E𝑟∼𝜋 (𝑟 |𝑞) [Δ(𝑟, rel𝑞)], (2)

where 𝑟 denotes a ranked list, rel
𝑞
denotes the relevance of the

items in query 𝑞 and Δ(·, ·) is a ranking loss such as DCG or NDCG.

See [38] for more details. In practical settings, we often only dispose

of data coming from a different logging policy ℎ and hence off-policy

learning and evaluation methods are needed [26]. We rewrite (2) as

𝑈 (𝜋 |𝑞) = E𝑟∼ℎ (𝑟 |𝑞)
[
Δ(𝑟, rel𝑞) 𝜋 (𝑟 |𝑞)

ℎ(𝑟 |𝑞)

]
, (3)

using an importance sampling identity, see [1, 22, 40] for more

details. Depending on the assumptions made on the underlying

clickmodels we either useℎ(𝑟 |𝑞) directly or the propensity that item
𝑖 ∈ 𝑟 is shown in position 𝑘 , denoted by ℎ(𝑖, 𝑘 |𝑞) = P(rank(𝑖) = 𝑘).
If logged propensities are not available, they can be approximated

using Monte Carlo using sampling from the policy ℎ in order to get

P(rank(𝑖) = 𝑘) ≈
𝑁∑︁
𝑛=1

1{rank(𝑖𝑛) = 𝑘}/𝑁 . (4)

Then, ℎ̂ ≈ ℎ is used inside (3), see also [3]. Policy evaluation or

training can be done on these approximate utilities.

3.2 Plackett-Luce sampling and the
policy-gradient ranking algorithm

A natural policy over rankings is the Plackett-Luce policy 𝜋𝜃 , de-

fined as a product of softmax distributions with scores 𝑠𝑖 = ℎ𝜃 (𝑥
𝑞

𝑖
),

parametrized by a scoring function ℎ𝜃 (e.g. neural network), which

takes query-item features 𝑥
𝑞

𝑖
as input. Optimizing the policy is

achieved by finding 𝜃★ = argmax𝜃 E𝑞∼𝑄 [𝑈 (𝜋𝜃 |𝑞)], typically by

using gradient-based methods. However, differentiating the pre-

vious expression is difficult as the utility is itself an integral with

respect to the policy 𝜋𝜃 . The log derivative trick provides a solution

[44]. The gradient of the utility can be approximated as

∇𝜃E𝑞∼𝑄 [𝑈 (𝜋𝜃 |𝑞)] ≈
1

𝑄𝑁

𝑄∑︁
𝑞=1

𝑁∑︁
𝑛=1

∇𝜃 log𝜋𝜃 (𝑟𝑛,𝑞 |𝑞)Δ(𝑟𝑛,𝑞, rel𝑞), (5)

where for every query𝑞we draw𝑁 rankings from the Plackett-Luce

policy 𝜋𝜃 (·|𝑞). Estimated gradients are then used inside well estab-

lished stochastic gradient descent methods where we use query

batches of size 𝑄 and 𝑁 samples from the PL model per query.

This framework has two potential issues: first, the score function

gradient typically has high variance, which can lead to slow training

[37]. Second, sampling from the PL model can become costly for

huge query sizes. We will show an efficient solution consisting in

the combination of QMC with the Gumbel top-k trick [23].

3.3 Sampling from the PL-model and the
Gumbel top-k trick

Sampling from the PL distribution can be achieved through repeated

softmax sampling where the last selected item is removed from the

list. This naive approach has complexity O(𝑛2𝑞) due to the repeated
normalization of the softmax. The Gumbel top-k trick allows to

sample from the PL distribution with log-linear complexity and

was popularized by [23] and used in the ranking literature by [6,

13, 31]. A sample 𝑟 can be obtained by first sampling 𝑢1, . . . , 𝑢 |𝑞 | ∼
U[0, 1], followed by computing standard Gumbel random variables

𝑔𝑖 = − log(− log(𝑢𝑖 ))∀𝑖 and finally sorting the Gumbel variables

summed with the scores. We obtain 𝑟 = arg sort𝑖 (𝑠𝑖 + 𝑔𝑖 ) and thus

the required 𝑟 ∼ 𝜋 (·|𝑞).

3.4 Quasi-Monte Carlo
Quasi-Monte Carlo [10, 18] is a numeric integration technique that

has seen extensive use in statistics and machine learning over the

last years. Analogously to Monte Carlo sampling the goal is to

approximate the integral

∫
[0,1]𝑑 𝑓 (𝑢)𝑑𝑢 = 𝐼 . Standard Monte Carlo

sampling achieves this by formulating the above problem as integral

𝐼 = E[𝑓 (𝑈 )], where 𝑈 ∼ U[0, 1]𝑑 . By the law of large numbers

𝐼𝑁 =
∑𝑁
𝑛=1 𝑓 (𝑢𝑛)/𝑁 , where 𝑢𝑛 ∼ U[0, 1]𝑑 for 𝑛 ∈ 1, . . . , 𝑁 , con-

verges to 𝐼 as 𝑁 → ∞. This convergence happens at a rate of

Var(𝐼𝑁 ) = O(1/𝑁 ). Going beyond the uniform distribution, the

above approach can be applied to almost arbitrary distributions

𝑋 ∼ P by exploiting the fact that 𝑋 = Γ(𝑈 ) and Γ is the inverse cdf

of 𝑋 and hence 𝐼𝑁 =
∑𝑁
𝑛=1 𝑓 (Γ(𝑢𝑛))/𝑁 approximates E[𝑓 (𝑋 )].

Figure 1: 256 samples generated by a MC sequence (left), and
two popular QMC sequences (middle and right) over [0, 1]2.

Quasi-Monte Carlo builds on the above by constructing low

discrepancy sequences over the unit hypercube𝑢1, . . . , 𝑢𝑁 ∈ [0, 1]𝑑 .
These sequences can be thought of as being more evenly distributed

than random uniform sampling. Under smoothness conditions on

the function of interest 𝑓 ◦Γ, quasi-Monte Carlo then achieves better

approximations of 𝐼𝑁 : the error behaves as E[|𝐼 − 𝐼𝑁 |2] = 𝑜 (1/𝑁 )
2



and thus goes to 0 at a rate faster than standard MC, see for example

[17]. This rate can be as fast as O(1/𝑁 2), see [17], and empirically

almost always leads to a smaller error. We illustrate three different

uniform sequences in Figure 1. The left sequence corresponds to

a random uniform Monte Carlo sequence and shows some typical

random clustering. The middle (called Halton sequence [20]) and

right sequences (called scrambled Sobol sequence [14, 39]) are more

evenly distributed, hence using them for integration will result in a

reduced error. In practice we use randomized QMC sequences, such

as the scrambled Sobol sequence, which reintroduce stochasticity in

the sequence but keep the desirable properties. Thus, expectations

are well defined, the estimates are unbiased and we can use our

probabilistic toolbox to compute variances. We refer to [15, 18] for

more details on construction of the sequences.

When not to use quasi-Monte Carlo instead of regular MC. Despite
the highlighted advantages, there are minor caveats to consider.

First, QMC can suffer from a curse of dimensionality. If we inte-

grate over high dimensional subspaces, we need more points to

construct evenly spread sequences. Second, the function of interest

to integrate 𝑓 ◦Γ must be sufficiently smooth, i.e., the function must

at least twice integrable (the variance must exist). Third, sample

sizes have to be set to 2
𝑘
for 𝑘 ∈ N in order to obtain theoretical

guarantees, [34]. In practice, however, this is just a minor caveat.

4 QMC FOR PL SAMPLING
We suggest to leverage the variance reduction from QMC for two

purposes: (i) for obtaining low variance propensity estimates; (ii)

for obtaining more precise gradients for our ranking objective in (1).

The combination of these ideas leads to a straightforward, easy-to-

implement (see Listing 1) variance reduction as QMC generators are

available in widely used libraries such as scipy [41] and pytorch
[35]. In summary we advocate to use the Gumbel top-k trick to sam-

ple 𝑁 rankings for every query 𝑞 by generating a QMC sequence of

length 𝑁 and dimension |𝑞 |. Estimators of the utility in (2) will thus

be of reduced variance and consequently the estimated gradients

in (5) will also be more precise. Our approach can also be used for

estimating propensities that are required for counterfactual offline

evaluation of ranking algorithms [26]. Here is a code example to

show how straightforward the implementation is:

import numpy as np

from t o r ch . quas irandom import Sobo lEng ine

def mc_rank_sampl ing ( mc_type , mc_samples , n_a c t i on s , s c o r e s ) :

i f mc_type == "MC" :

u = np . random . uni form ( s i z e =( mc_samples , n _ a c t i o n s ) )

e l i f mc_type == "QMC" :

s = Sobo lEng ine ( d imens ion=n_ac t i on s , s c r amb l e =True )

u = s . draw ( mc_samples ) . T . numpy ( )

gumbels = −np . l og ( −np . l og ( u ) )

return np . a r g s o r t ( s c o r e s + gumbels , a x i s =1 )

Listing 1: Sample rankings from PL policy with MC and QMC

4.1 Theoretical considerations
As gets evident from (5), the gradient is an estimator that suffers

from two sources of variability: the variance from the mini batch

size of the queries (using 𝑄 both for the number of queries and the

query distribution) and the variance from sampling from the PL-

model (with 𝑁 samples per query). As such, both terms will impact

the precision of the estimators, a situation that has been studied in

a reverse setting by [7]. Using a similar variance decomposition we

obtain the following result.

Theorem 4.1. Let 𝐹𝑄,𝑁 = 1

𝑄𝑁

∑𝑄

𝑞=1

∑𝑁
𝑛=1 Δ(𝑟𝑛,𝑞, rel

𝑞) be an es-
timator of E𝑞∼𝑄 [𝑈 (𝜋𝜃 |𝑞)]. If 𝑟𝑛,𝑞 is based on samples of a random
MC distribution, then

Var𝑄 [E𝑁 [𝐹𝑄,𝑁 |𝑄]] = O
(
1

𝑄

)
, (6)

E𝑄 [Var𝑁 [𝐹𝑄,𝑁 |𝑄]] = O
(

1

𝑄𝑁

)
. (7)

If 𝑟𝑛,𝑞 is based on samples of a transformed QMC sequence (in partic-
ular a scrambled Sobol sequence) then

E𝑄 [Var𝑁 [𝐹𝑄,𝑁 |𝑄]] = O
(

1

𝑄𝑁 2

)
, (8)

and the first term (6) stays the same.

Proof. The proof is based on a decomposition of variance (over-

loading notation of 𝑄 and 𝑁 ) using the law of total variance

Var[𝐹𝑄,𝑁 ] = E𝑄 [Var𝑁 [𝐹𝑄,𝑁 |𝑄]] + Var𝑄 [E𝑁 [𝐹𝑄,𝑁 |𝑄]] .
We exploit that both randomized QMC and MC yield unbiased esti-

mators per query. Then, we check that the transformation mapping

𝑢𝑛 to Δ(𝑟𝑛,𝑞, rel𝑞) is square-integrable. This is true as the transfor-
mation is bounded due to the Gumbel top-k trick. □

A similar result can be obtained for the gradient in (5). Define

ˆ∇𝐹𝑄,𝑁 =
1

𝑄𝑁

𝑄∑︁
𝑞=1

𝑁∑︁
𝑛=1

∇𝜃 log𝜋𝜃 (𝑟𝑛,𝑞 |𝑞)Δ(𝑟𝑛,𝑞, rel𝑞).

The trace of the variance tr Var
ˆ∇𝐹𝑄,𝑁 can also be decomposed

using the law of total variance and we obtain equivalent statements

for (6), (7) and (8). We will provide a more thorough theoretical

analysis in an extended version of this paper.

As shown in [8] (without the mini-batch perspective), the result-

ing stochastic gradient procedure results in faster convergence of

the loss function optimization. These results directly translate to

the above setting.

Our result highlights two points: first, QMC will almost always

result in more precise estimators due to the improved rate in (8)

compared to (7). However, second, a natural limit exists as the

dominating term in the decomposition is the batch size in (6). The

batch size variance contribution remains even if all variance from

the PL sampling is removed. In our experiment section we will

highlight these two points.

5 EXPERIMENTS
We illustrate how the obtained variance reduction from QMC bring

improvements in two use cases. First, increased precision when

computing propensities useful for counterfactual offline evaluation,

and second, we will show performance improvement when training

PG-rank due to reduced gradient variance using industrial produc-

tion logs from a ranking use case in Amazon Music, as well as data

from the Yahoo LTR challenge.

3



5.1 Propensity estimation
We illustrate the improved estimation of propensities in (4) using

QMC for the PLmodel.We fix lists of size [5, 25, 50] with item scores

generated according to a standard normal distributionN(0, 1) with
a fixed seed. We simulate draws from the PL model for sample sizes

going from 2
2
to 2

10
to compute estimators of the propensities. We

repeat this 200 times to assess the variance of the the estimator

in (4). The propensities are computed for a single query (batch

size of 1). Thus, we isolate the effect that comes from the Monte

Carlo estimator of the propensity. We illustrate the reduced error

in estimating the propensity in Figure 2. As shown, the QMC based

estimator is consistently more precise (lower mean squared error)

for different list sizes (number of items) and the error decreases

faster than the equivalent estimator based on MC. The more precise

estimation of the propensity with larger sample sizes comes from

the faster rate of QMC sampling (i.e., 1/𝑁 2
compares to 1/𝑁 for

regular Monte Carlo). As the list sizes increases from 5 to 50 the

achieved MSE reduction decreases. This is due to the aforemen-

tioned curse of dimensionality. As the space to cover increases in

dimension, we need more QMC-points to cover the space well.

Figure 2: Propensity estimation for the PLmodel: MSE of MC
and QMC estimates for different sample and list sizes.

5.2 Training of PG-rank
We illustrate improved training of PG rank using data from the

YLTR challenge [11] and logs of a production policy used for a

ranking use case in Amazon Music.

YLTR. We simulate an online learning framework by using the

approach described in [2, 29] using the position bias model for

simulating if a relevant item was seen. We use 100 different items to

rank and set the position bias curve to 1/𝑘 where 𝑘 is the item posi-

tion. We run over a single epoch of the dataset only, using a batch

size of 1000. The metrics are computed out-of-sample, meaning

for every batch we computed loss, DCG and CTR before updating

the model with the data from the batch, mimicking the production

scenario where the model is trained online with batch updates. We

use a neural network with 64 hidden units inside PG rank. The

algorithms runs over one epoch of data using SGD with a learning

rate of 0.1. We repeat the run 10 times to obtain confidence intervals.

As illustrates Figure 3, the use of as little as 8 quasi-Monte Carlo

samples speeds up learning substantially. We see an increase of the

DCG, the CTR and a reduction in the loss as learning progresses.

Real world production logs. Finally, we illustrate the applicabil-
ity of our approach on production data from Amazon Music. The

dataset contains roughly 10
6
data points that were logged from a

deterministic ranking policy. Our offline training approach uses a

Figure 3: DCG, CTR, and loss when online training PG-rank
on the Yahoo Learning to Rank challenge data.

position bias model to correct for the fact that implicit feedback of

the user depends on the visibility of the content. The position bias

curve was estimated using the approach described in [2]. We use

the offline evaluation methodology as outlined in [26]. We train

PG-rank algorithms using SGD with different step sizes using a

single layer neural network of size 64 and with a learning rate of

0.001. We vary query batch sizes and Monte Carlo sampling sizes

in order to disentangle their respective effect.

To avoid disclosing sensitive business information on the target

metric we report relative improvements (lift in % of the target

metrics) of QMC with respect to the MC version of the algorithm

only. We repeat estimations 10 times in order to obtain confidence

intervals.

As illustrated in Figure 4, the use of QMC instead of MC sampling

leads to improvements in the training objective of up to 4%. At

worst, there is no notable difference between the two algorithms.

The gain decreases when we allow for more Monte-Carlo samples,

which in turn increases the computational cost of themodel updates.

Importantly, there was no notable difference in computational time

between training using MC and QMC.

Figure 4: Lift in % of our target metric when using QMC
instead of MC for training the PG-rank algorithm on produc-
tion logs of Amazon Music.

6 CONCLUSION
We showed that QMC is a straightforward approach for sampling

from the PL model. QMC yields low-variance, unbiased estimators

of propensities and speeds up training of learning-to-rank methods

as highlighted with PG-rank. This provides a strong case for using

QMC consistently in production models as the implementation

is easy and comes with guarantees. Potential extensions are the

comparison and generalization to other ranking algorithms that use

sampling from the PL model to approximate loss functions or their

4



gradients such as [42] or [31] and a more thorough investigation

of the offline learning setting. We conjecture that in these models

QMC will also lead to convergence improvements.
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